Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorHao-Jan Hsingen
dc.contributor.author邢浩然zh_TW
dc.date.accessioned2021-06-13T06:34:38Z-
dc.date.available2008-01-26
dc.date.copyright2006-01-26
dc.date.issued2006
dc.date.submitted2006-01-18
dc.identifier.citationReference
Acero, J.L., Stemmler, K., and von Gunten, U. (2000). Degradation kinetics of atrazine and its degradation by-products with ozone and OH radicals: a predictive tool for drinking water treatment. Eviron. Sci. Technol., 34, 591-597.
Acero, J.L., et al. (2001) MTBE oxidation by conventional ozonation and combination of ozone/hydrogen peroxide: efficiency of processes and bromide formation. Eviron. Sci. Technol., 35, 4252-4259.
Adams, C.D. and Gorg, S. (2002). Effect of pH and gas-phase ozone concentration on the decolorization of common textile dyes. J. Environ. Eng., 128, 293-298.
Akmehmet-Balcioğlu, I. and Getoff, N. (1997) Advanced oxidation of 4-Chlorobenzaldehyde in water by UV-light, ozonation and combination of both methods. Chemosphere, 36, 1993-2005.
American Public Health Association (APHA), 1995. Standard methods for the examination of water and wastewater, 19th Ed. (Washington, D.C, USA.
Arora, M.L., Barth, E.F. and Umphres, M.B. (1985) Technology evaluation of sequencing batch reactors. J.- Water Pollut. Control Fed., 57, 867-875.
Andreozzi, R. and Marotta, R. (1999) Ozonation of p-Chlorophenol in aqueous solution. J. of Hazard. Mater., B69, 303-317.
Arslan, I. and Balcioglu, A. (2000) Effect of common reactive dye auxiliaries in the ozonation of dyehouse effluents containing vinylsulphone and aminochlorotriazine dye. Desalination, 130, 61-71.
Beltràn, F.J., Gomez-Serrano, V. and Duran, A. (1992) Degradation kinetics of p-Nitorphenol ozonation in water. Water Res., 26, 1309-1316.
Beltràn, F.J., Gonzàlez, M. and Gonzàlez, J.F. (1997) Industrial wastewater advanced oxidation. Part 1. UV radiation in the presence and absence of hydrogen peroxide or UV radiation. Water Res., 31, 2405-2414.
Beltràn, F.J., Encinar, J.M. and Gonzàlez, J.F. (1997) Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation. Water Res., 31, 2415-2428.
Beltràn, F.J. (1997) Theoretical aspects of the kinetics of competitive first reactions of O3/H2O2 and O3/UV oxidation processes. Ozone: Sci. Eng., 19, 13-38.
Beltràn, F.J., Beltràn-Heredia, J., Torregrosa, J. and Acero, J.L. (1999) Treatment of olive mill wastewaters by ozonation, aerobic degradation and the combination of both treatment. J. Chem. Technol. Biotechnol., 74, 639-646.
Beltràn, F.J., Garcia-Araya, J.F., Alvarez, P.M. (1999) Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 1. Biodegradation and post-ozonation. J. Chem. Technol. Biotechnol., 74, 877-883.
Beltràn, F.J., Beltràn-Heredia, J., Acero, J.L., Rubio, F.J. (2000) Rate constants for the reactions of ozone with chlorophenols in aqueous solutions J. of Hazard. Mater., B79, 271-285.
Beltràn, F.J., Beltràn-Heredia, J., Acero, and Rubio, F.J. (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere, 41, 1271-1277.
Beltràn, F.J. (2004) Ozone reaction kinetics for water and wastewater systems. Lewis Publishers, Boca Raton, FL, USA.
Calderara, V., Jekel, M., and Zaror, C. (2002). Ozonation of 1-Naphthalene, 1,5-Naphthalene and 3-nitrobenzene sulphonic acid in aqueous solutions. Envirn. Technol., 23, 373-380.
Chen, L.-C. (2000) Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone. Water Res., 34, 974-982.
Chen, Y.H., C.Y. Chang, C.C. Chen, C.Y. Chiu, Y.H. Yu, P.C. Chiang, C.F. Chang, and Y. Ku (2004) Decomposition of 2-Mercaptothiazoline in an Aqueous Solution by Ozoantion with UV Radiation. Ind. Eng. Chem. Res., 43, 1932-1937.
Chiang, P. C., Ko,Y-W. Liang, C.-H., and Chang, E.E. (1998) Modeling an ozone bubble column for predicting its disinfection efficiency and control of disinfection by-products formation. Chemosphere, 39, 55-70.
Chu, W. and Ma, C.-W. (1998) Reaction kinetics of UV-decolorization for dye materials. Chemosphere, 37, 961-974.
Chu, W. and Ma, C.-W. (2000) Quantitative prediction of direct and indirect dye ozonation kinetics. Water Res., 34, 3153-3160.
Ciardelli, G. and Ranieri, N. (2001). The Treatment and Reuse of Wastewater in the Textile Industry by Means of Ozonation and Electroflocculation. Water Res. 35, 567-572.
Cogo,E., Albet, J., Malmary, G., Coste, C. and Molinier, J. (1999) Effect of Reaction Ozone Mass Transfer and Applications to Pulp Bleaching. Chem. Eng. J., 73, 23-28.
Deckwer, W.D. and Schumpe, A. (1993). Improved tools for bubble column reactor design and scale-up. Chem. Eng. Sci., 48, 889-991.
European Union, European Union Council Directive 2003/53/EC amending for the 26th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (nonylphenol, nonylphenol ethoxylate and cement). Off. J. European Union, L 178/24-L 178/28 (2003).
Glaze, W.H. and Peyton, G.R. (1988) Destruction of Pollutants in Water with Ozone in Combination with Ultraviolet Radiation. 3. Photolysis of Aqueous Ozone. Environ. Sci. Technol. 22, 761–767.
Gottschalk, C., Libra, J.A., and Saupe, A. (2000) Ozonation of Water and Wastewater- A practical Guide to Understanding Ozone and Its Application. Wiley-VCH, Gmbh, Weinhein, Germany, p. 12-15.
Gurol; M. and Singer, P. (1982) Kinetics of ozone decomposition - a dynamic approach. Environ. Sci. Technol., 16, 377-383.
Hermanowicz, S.W., Bellamy, W.D., and Fung, L.C. (1999). Variability of ozone reaction kinetics in batch and continuous flow reactors. Water Res., 33, 2130-2138.
Hao, O. J.; Kim, H.; and P. Chiang (2000) Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol., 30, 449-505.
Hassan, M.M. and Hawkyard, C.J. (2002). Ozonation of aqueous dyes and dyehouse effluent in a bubble-column reactor. J. Environ. Sci. Health, Part A, 37, 1563-1579.
Hautaniemi, M., J. Kaalas, R. Munter, and Trapido, M. (1998) Modeling of chlorophenol treatment in aqueous solutions. 1. Ozonation and ozonation combined with UV Radiation under acidic conditions” Ozone: Sci. Eng. 20, 259-282.
Hermanowicz, S.W., Bellamy, W.D. and Fung, L.C. (1999). Variabilty of ozone reaction kinetics in batch and continuous flow reactors. Water Res., 33, 2130-2138.
Hitchcock, D.R., Law, S.E., Wu, J. and Williams, P.L. (1998). Determining toxicity trends in the ozonation of synthetic dye wastewaters using the Nemaode Caenorhabditis elegans. Arch. Environ. Contam. Toxicol., 34, 259-264.
Hostachy, J.-C., Lenon,G., Pisicchio, J.-L., Coste, C. and Legay, C. (1997) Reduction of pulp and paper mill pollution by ozone treatment Water Sci. Technol., 35, 261-268.
Hu, C., Yu, J.C., Hao, Z., and Wong, P.K. (2003). Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. Appl. Catal., B42, 47–55.
Huang, C.-R. and Shu, H.Y. (1995) The reaction kinetics, decomposition pathways and intermediate formation of phenol in ozonation, UV/O3 and UV/H2O2 processes J. of Hazard. Mater., 14, 47-64.
Ikemizu, J., Morooka, S., Kato, Y. (1987) Decomposition rate of ozone in water with ultraviolet radiation J. Chem. Eng. Jap., 20, 77-81.
Jones, K. D. and Huang, W.-H. (2003). Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems. J. Hazard. Mater., B103, 93–105.
Kang, S.F. and Chang, H.M. (1997). Coagulation of Textile Secondary Effluents with Fenton’s Reagent. Water Sci. Technol. 36, 215–222.
Kang, S.F., Liaob, C.-H., and Chen, M.-C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46, 923–928.
Kasprzyk-Horden, B., Ziółek, M. and Nawrocki, J. (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal., B, 46, 639-669.
Koch, M., Yediler, A., Lienert, D., Insel, G. and Kettrup, A. (2002) Ozonation of hydrolyzed azo dye reactive yellow 84 (C.I.) Chemosphere, 46, 109-113.
Konsowa, A.H. (2003). Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination, 158, 233-240.
Ku, Y., Su, W.J., and Shen, Y.S. (1996) Decomposition kinetics of ozone in aqueous solution Ind. Eng. Chem. Res., 35, 3369-3374.
Kuo, C.H. and Huang, C.H. (1995). Aqueous-phase ozonation of chlorophenols. J. Hazard. Mater., 44, 41-31.
Kuo, W.S. (1999) Synergistic effects of combination of photolysis and ozonation on destruction of chlorophenols in water Chemosphere, 39, 1853-1860.
Langlais, B., Reckhow, D.A. and Brink, D.R. (1991) Ozone in water treatment—Application and Engineering Lewis Publishers, New York, N.Y., USA.
Ledakowicz, A.; Solecka, M; and Zylla, R. (2001) Biodegradation, decolorization and detoxification of textile wastewater enhanced by advanced oxidation processes. J. of Biotechnol., 89, 175-184.
Ledakowicz, A.; Solecka, M; and Zylla, R. (2001) Ozonation of Reactive Blue 81 in the bubble column. Water Sci. Technol., 44, 47-52.
Lee, J.-M., Kim, M.-S., Hwang, B., Bae, W., and Kim, B.-W. (2003). Photodegradation of Acid Red 114 dissolved using a photo-Fenton process with TiO2. Dyes and Pigments, 56, 59–67.
Li, L., Zhu, W., Zhang, P., Chen, Z., and Han, W. (2003). Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res., 37, 3646-3651.
Lopez, A., Ricco, Ciannarella, G., Rozzi, R.A., Di Pinto, A.C. and Passino, R. (1999) Textile wastewater reuse: ozonation of membrane concentrated secondary effluent. Water Sci. Technol., 40, 99-105.
McCabe, W.L., Smith, J.C., and Harriot, P. (1993). Unit Operations of Chemical Engineering, 5th Ed., McGraw-Hill, New York, NY, p. 257.
Martins, M.A.M., Ferreira, I.C., Santos, I.M., Queiroz, M.J., and Lima, N. (2001). Biodegradation of bioaccessible textile azo dye by Phanerochaete chrysosporium. J. Biochnol., 89, 91-98.
Meriç, S., Kaptan, N., and Ölmez, T. (2004). Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54, 435-441.
Mitani, M.M. et al., (2002). Kinetics and products of reactions of MTBE with ozone and ozone/hydrogen peroxide in water. J. Hazard. Mater., B89, 197-212.
Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J., and Cockec, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater., B114, 199–210.
Nitschke, L., Wilk, A., Schussler, W., Metzner, G., Lind, G. (1999) Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere, 39, 2313-2323.
Neamtu, M., A. Yddiler, I. Siminiceanu, M. Macoveanu, and Kettrup, A. (2004). Decolorization of Disperse red 354 azo dye in water by several oxidation processes - a comparative study. Dyes and Pigments, 60, 61-68.
Oeller, H.-J., Demel, I. and Weinberger, G. (1997) Reduction in residual COD in biologically treated paper mill effluents by means of combined ozone and ozone/UV reactor stage. Water Sci. Technol., 35, 269-276.
O’Neill, C., Hawkes, F.R., Esteves, S.R.R., Hawkes, D.L. and Wilcox, S.J. (1999) Anaerobic and aerobic treatment of a simulated textile effluent. J. Chem. Technol. Biotechnol., 74, 993-999.
Oliviero L., Barbier, J., and Duprez, D. (2003) Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Appl. Catal., B. 40, 163-184.
Parisheva, Z. and Demirev, A. (2000) Ozonation of ethanolamine in aqueous medium. Water Res., 34, 1340-1344.
Perkowski, J., Kos, L., and Ledakowicz, S. (1996). Application of ozone in textile wastewater treatment. Ozone: Sci. Eng., 18, 73-85.
Pielesz, A., Baranowska, I., Rybak, A., and Wlochowicz, A. (2002). Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes. Ecotoxicol. Environ. Saf. 53, 42-47.
Qiu, Y. (2001) Performance and simulation of ozone absorption and reaction in a stirred-tank reactor. Environ. Sc. Technol., 35, 209-215.
Qiu, Y., Kuo, C., and Zappi, M.E. (2002) Ozonation kinetics of six dichlorophenol isomers. Ozone: Sci. Eng., 24,123-131.
Pichat, P., Cermenati, L., Albini, A., Mas, D., Delprat, H., and Guillard, C. (2000). Degradation processes of organic compounds over UV-irradiated TiO2· effect of ozone. Res. Chem. Intermed., 26, 161-170.
Rajaguru, P., Kalaiselvi, K., Palanivel, M., and Subburam, V. (2000) Bidegradation of azo dyes in a sequential anaerobic-aerobic system. Appl. Microbiol. Biotechnol., 54, 268-273.
Rathi A., Rajor, H.K., and Sharma, R.K. (2003) Photodegradation of direct yellow-12 using UV/H2O2/Fe2+. J. Hazard. Mater. B102, 231-241.
Rice, R.G., L., Bollky, J., and Lacy, W.J. (1986) Analytical aspects of ozone treatment of water and wastewater. Lewis Publisher, New York, N.Y., USA .
Rice, R.G. (1997) Application of ozone for industrial wastewater treatment – A review. Ozone: Sci. Eng., 18, 477-515.
Rivas, F.J., Beltràn, F.J., and Gimeno, O. (2000) Joint treatment of wastewater from table olive processing and urban wastewater. Integrated ozonation- aerobic oxidation. Chem. Engr. Technol., 23, 177-181.
Roth, J.A. and Sullivan, D.E. (1981). Solubility of Ozone in Water. Ind. Eng. Chem. Fund., 20, 137-140.
Sadik, W. and Shama, G. (2002). UV-Induced decolourization of an azo dye by homogeneous advanced oxidation processes. Trans IChemE, 80, 310-314.
Sakkas, V.A and Albanis, T.A. (2003) Photocatalyzed degradation of the biocides chlorothalonil and dichlofluanid over aqueous TiO2 suspensions. Appl. Catal., B.46, 175-188.
Sarasa, J., Roche, M.P., Ormad, Gimeno, M.P., Puig, E.A. and Ovelleiro, J.L. (1998) Treatment of a wastewater resulting from dye manufacturing with ozone and chemical coagulation Water Res., 32, 2721-2727.
Sevimli, M.F. and Sarikaya, H.Z. (2002) Ozone treatment of textile effluents and dyes: effect of applied ozone dose, pH and dye concentration. J. Chem. Technol. Biotechnol. 77, 842-850.
Shu, H.Y. and Huang, C.-R. (1995) Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process. Chemosphere, 31, 3813-3825
Sotelo, J.L., Beltran, F.J., and Beltran-Heredia, J. (1987) Ozone decomposition in water: kinetics study. Ind. Eng. Chem. Res., 26, 39-50.
Sotelo, J.L., Beltran, F.J., Benitez, F.J., and Beltran-Heredia, J. (1989) Henry’s law constant for ozone-water system. Water Res., 23, 1239-1248.
Stockinger, H., Kut, O.M. and Heinzle, E. (1996) Ozonation of wastewater containing n-methylmorpholine-n-oxide Water Res., 30, 1745-1748.
Stemmler, K., Gold, G., and von Gunten, U. (2001). Oxidation of metal-diethylenetrimine-pentaacetate (DTPA)-complex during drinking water ozonation. Water Res., 35,1877-1886.
Sumathi, S. and Manju, B.S. (2000) Uptake of reactive dyes by Aspergillus fetidus. Enzyme Microb. Technol., 27, 347-355.
Tanaka, K., Abe, K., and Hisanaga, T. (1996). Photocatalytic water treatment on immobilized TiO2 with ozonation. J. Photochem. Photobiol., A, 101, 85-87.
Tang, C. and Chen, V. (2004). The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Res. 38, 2775-2781.
Trapido, M., Hirvonen, A., Veressinina, Y., Hentunen, J., and Munter, R. (1997) Ozonation, ozone/UV and UV/H2O2 degradation of chlorophenols Ozone: Sci. Eng., 19, 75-96.
Wang, C., A. Yediler, D. Lienert, Wang, Z., and Kettrup, A. (2003) Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere, 52, 1225-1232.
Waring, D.R. and G. Hallas (1990) The Chemistry and Application of Dyes, New York, NY, Plenum Press, p. 18-21.
Weiss,L. (1935) Investigation on the radical HO· in solution. Transaction Faraday. Sci., 31, 668.
Wilke, C.R. and Chang, P.C. (1955). Correlation of diffusion coefficients in dilute Solution. AIChE J., 1, 264-270.
Wu, J. and Wang, T. (2001) Ozonation of aqueous azo dye in a Semi-batch reactor. Water Res. 35, 1093-1099.
Xu, X.-R., Li, H.-B., Wang, W.-H., and Gu, J.-D. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57, 595-600.
Zeng, Y, Hong, P.K.A. and Wavrek, DA (2003) Chemical-biological treatment of pyrene. Water Res., 34, 1157-1172.
Zgajnar, A. and Zagoc-Koncan, J. (1999) Biodegradation studies as an important way to estimate the environmental fate of chemicals. Water Sci. Technol., 39, 375-382.
Zhou, H., Smith, D.W., and Stanley, S.J. (1994). Modeling of dissolved ozone concentration profiles in bubble columns. J. Environ. Eng., 120, 821-840.
染料與助劑名錄,1997年版 染化雜誌社印行。
胡思聰 (1994) 臭氧預處理之氯酚化合物廢水對於活性污泥系統處理效應之影響 博士論文,國立台灣大學。
柯雅雯 (1999) 臭氧處理對自來水中消毒副產物與有機前質之去除研究 博士論文,國立台灣大學。
申永順 (1998) 以高級氧化程序處理揮發性有機污染物反應行為及光反應器設計之研究 博士論文,國立台灣科技大學。
中國技術服務社(1992) 加強「染料、助劑對環境污染之影響」研究綜合報告
經濟部工業局 (1997) 工業減廢技術手冊-顏料工業
北原文雄、玉井康雄、早野茂夫、原一郎 (1979) 界面活性劑應用實務,復漢出版社
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34783-
dc.description.abstract本研究探討臭氧以半批次反應的方式,與水中偶氮性染料(酸性橘色6號,AO6)之反應,以不同的控制參數,包括:溫度、酸鹼度及臭氧劑量做為研究的起點,逐一探討其對AO6之去色與礦化之影響,並分別提出相關之反應速率常數做為探討較佳處理參數之依據;此外,以連續的逆流式氣泡塔探討氣體液體流量比率及管柱高度對水中偶氮性染料(反應性黑色5號,RB6)之去色與礦化之影響,以瞭解上述因子之影響程度,並經由對生物降解性及毒性的量測,確認較佳之操作參數,相關研究成果可做為後續研究之基礎。
在半批次反應方面,當臭氧與AO6的反應主要發生在液相範圍,在pH小於7時,以直接反應為主,當pH大於7時,以間接反應為主,此一結果亦在pH因子影響量測中獲得證實,在pH大於7時的總有機碳去除速率常數較pH小於7時大。在臭氧化開始後約30分鐘內,AO6的色度快速降低,在40分鐘之內,達到無色階段,其顯示臭氧的選擇性攻擊主要針對偶氮鍵(N=N),因其氧化潛能低於芳香族的不飽和鍵,而此時的總有機碳去除比率則小於0.9,其證實臭氧處理於色度存在之時,臭氧多消耗於偶氮鍵的破壞,然因,臭氧消耗速度較快之故,固此時於水中並未發現溶臭氧的存在。
臭氧劑量的高低與去色速率呈現正相關,其影響幅度較溫度的影響為明顯,而礦化速率則明顯受溫度的影響,在35oC的狀況下,礦化速率常數為0.029 min-1,而在15 oC的狀況下,礦化速率常數為0.016 min-1,其受影響的幅度稍大於去色反應(由0.14增加至0.17 min-1)。如以臭氧劑量為探討因子,當臭氧劑量由9.7增加至33.3mg/L-min時,去色反應速率常數由0.14增加至0.26 min-1,而礦化速率常數的增幅則僅33%。臭氧處理無法將水中有機物質完全礦化,因此,必須借助輔助氧化系統,而本研究中亦以紫外線(254nm波長)為範例,探討臭氧與臭氧/紫外線對含有AO6染料水樣中總有機碳去除與毒性降解之影響。
當以臭氧為唯一的處理單元時,在4小時的處理時間下,溶解性總有機碳的去除率為82%,而增加紫外線為輔助時,在120分鐘內即可達到100%的去除效果,在處理過程中,無法達成氮質量平衡,其原因在於部份氮元素轉化為一氧化氮、二氧化氮與氮氣而跟隨排氣排除,對於毒性降解方面,臭氧/紫外線處理對水樣中毒性的降低效果比僅以臭氧為處理方式者為快且明顯。如以一多步驟動力模式為基礎,探討並預測去色、礦化及硫酸鹽之生成,以反應速率及決斷係數做為判定是否提高反應步驟之依據。
在連續逆流式氣泡塔研究中,約在1HRT的時間內,出口處的色度與總有機碳濃度即達穩定,當提高氣體進流量時,管柱內無色之高度逐漸向上升,反之提高液體進流量時,管柱內無色之高度逐漸向下降,可知氣體/液體進流量比率可改變去色與礦化的效果,而管柱高度亦影響其效果,在固定液體流量的情況下,當1<氣體/液體進流量比率<2時,礦化的效果較佳;在生物降解方面,固定液體流量的情況下,BOD5/COD值由0.1增加至1.0,反之,固定氣體流量的情況下,BOD5/COD值由0.1增加至0.5,顯示增加氣體流量對生物降解性的提升具明顯效果。在毒性降解方面,氣體/液體進流量比率增加的情況下,毒性快速下降,因此,控制氣體/液體進流量比率即可做為控制放流水毒性的參考依據。
zh_TW
dc.description.abstractThe ozonation of azo dyes both in semibatch reactor and continuous bubble column reactor are investigated in this study. The reaction rate for decolorization is faster than that of total organic carbon (TOC) reduction, and, as TOC removal ratio > 0.9 in semibatch system, the dissolved ozone concentration is nearly not detectable, suggesting that most ozone transfer from gas phase to liquid phase is consumed rapidly in oxidizing the azo dye by breaking the azo bond (N=N). As monitoring the selected parameters during the semibatch experiments, decolorization, and TOC removal were affected by pH, temperature, and ozone dose. Decolorization and AO 6 reduction were completed within 40 minutes of ozonation time for all examined cases. When the ozone dose increased from 9.7 to 33.3 mg/l-min, the decolorization rate constant increased from 0.14 to 0.27 min-1. The increases of k values suggest that decolorization and AO6 removal were affected by ozone dose. For the TOC removal, its reaction rate constants were temperature dependent and the effects of ozone dose and pH were not significant. Sulfate yield was accelerated upon the completion of decolorization. The sulfate yield may be due to the destruction of azo bonds and surplus ozone or OH– turns to attack aromatic rings. Significant increment of sulfate yield was observed during the TOC removal process.
Due to the ability to oxidize organics in water, both ozone alone and O3/UV254 are used to investigate the effectiveness of deolorization and mineralization of AO 6, the target compound. The results show that O3/UV254 system may reach the level of total mineralization of AO6 within 120 min, also revealing that the O3/UV254 system is a powerful treatment to breakdown all organic carbon in solution. During the ozonation, the nitrogen mass balance can be achieved that is due to the nitrogenous compounds are formed, such as N2, NO, and NO2.
In the countercurrent flow bubble column system, TOC, sulfate, and nitrate, but the variations of pH, A597 nm, and color all reach steady constants at 1 HRT. It suggests that color and N=N are easily to be removed comparing to TOC; the sulfate formation is consistent with TOC reduction. To control liquid or gas flow can affect the order of reaction, a pseudo-first order reaction is suggested in the fixed liquid flow rate experiments and a second order reaction may well explain for the fixed gas flow rate conditions. Not only flow patterns affect the RB5 removal and the mineralization of derivatives but also the column height may have influence on the ozone consumption. The extent of decolorization and mineralization decrease as the sampling port height increasing, indicating that the column height may reflect the retention time of ozone gas and the contacting time between ozone and RB 5 in BCR system. The biodegradability is enhanced via ozone treatment that is not proportional to the amount of ozone consumption but all results exhibit the similar increment trends.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:34:38Z (GMT). No. of bitstreams: 1
ntu-95-D89541007-1.pdf: 1059384 bytes, checksum: bf7d859ce8fc1c8021e113722ac173e7 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction 1-1
Chapter 2 Literature Reviews 2-1
2.1 Dye 2-1
2.2 Azo dyes 2-3
2.2.1 Azo dyes types 2-5
2.2.2 Use restriction 2-9
2.3 Characteristics of ozone and its generation 2-11
2.3.1 Past and now 2-11
2.3.2 Ozone property 2-12
2.4 Ozone Reaction 2-19
2.4.1 Self-decomposition mechanism 2-19
2.4.2 Ozone self-decomposition enhancement by photo-irradiation 2-24
2.4.3 Ozone reaction 2-25
2.4.4 Initiators, promotors and radical scavengers 2-29
2.5 Reaction kinetics 2-31
2.6 Other advanced oxidation processes 2-39
Chapter 3 Materials and Methods 3-1
3.1 Material 3-1
3.2 Experimental design 3-4
3.3 Experimental setup 3-8
3.3.1 Semi-batch system 3-8
3.3.2 Countercurrent bubble column 3-10
3.4 Experimental procedures 3-13
3.4.1 Semibatch system 3-13
3.4.2 Countercurrent bubble column reactor system 3-14
3.5 Analytical Method 3-15
3.6 Tracer test 3-17
3.7 Microtox&reg; analysis 3-17
Chapter 4 Results and Discussion 4-1
4.1 Effects of controlling parameters on ozonation 4-1
4.1.1 Temperature effect 4-8
4.1.2 pH effect 4-10
4.1.3 Ozone dose 4-10
4.1.4 TOC removal and sulfate formation 4-13
4.2 Decolorization and mineralization of AO 6 by O3 and O3/UV 4-17
4.2.1 Variations of pH, characteristic wavelength, and color 4-17
4.2.2 Sulfate, nitrate, and ammonium formation 4-20
4.2.3 DOC removal and anions formation 4-24
4.2.4 Toxicity assessment 4-31
4.3 Kinetics model of AO6 ozonation 4-33
4.3.1 The Development of Simplified Multi-step Reaction Kinetic Model 4-33
4.3.2 The determination of parameters used 4-35
4.3.3 Simulation of AO6’s Ozonation 4-35
4.3.4 Variations of θBLb, θTOC, θALb, and θAGe 4-38
4.3.5 The prediction for sulfate formation 4-44
4.4 Ozonation reaction in the Bubble column system 4-46
4.4.1 Tracer test 4-46
4.4.2 Ozoantion in BCR system 4-51
4.4.3 Effects of flow patterns on RB 5 ozonation 4-55
4.4.4 Ozone consumption and TOC removal 4-62
4.4.5 Column height effect 4-66
4.4.6 Toxicological bioassay 4-71
Chapter 5 Conclusion and Recommendations 5-1
5.1 Conclusion 5-1
5.2 Recommendations 5-2
References
Appendix

Table Content
Table 2.1 The category of dye by its application 2-2
Table 2.2 Chemical structures 2-2
Table 2.3. Molecular structures of typical azo dyes 2-7
Table 2.4 Structure of illuminating groups of azo dyes 2-8
Table 2.5 Common surfactants used in textile dyeing process 2-9
Table 2.6 List of aromatic amines according to the EU Directive 2002/61/EC 2-10
Table 2.7 Oxidizing Potential of Various Reagents 2-13
Table 2.8 Solubility of ozone (HA) and oxygen (HO) in water according to Henry’s law (Rice et al., 1986) 2-16
Table 2.9 Reaction rate constants of ozone decomposition reactions. 2-23
Table 2.10 Examples of initiators, promoters and radical scavengers 2-30
Table 2.11 Selected kD summary for various compounds under batch system 2-33
Table 3.1 Physical and chemical characterizations of AO 6 and RB 5 3-2
Table 3.2 Chemicals used for analysis in this study 3-3
Table 3.3 Experimental design for ozonation semibatch system 3-10
Table 3.4 Experimental design for countercurrent bubble column 3-11
Table 4.1 The rate constants for AO6 reduction, decolorization, and TOC removal under various temperatures 4-12
Table 4.2 Ozonation Kinetics of AO 6 Adopting Schemes with Various Reaction Steps 4-37
Table 4.3 Tracer test results and parameters for large flow rate patterns 4-49
Table 4.4 Tracer test results and parameters for small flow rate patterns 4-50
Table 4.8 The experimental setup and monitored parameters at 2.5 τ 4-70
Table 4.9 Parameters estimate for Equation 4-24 4-71

Figure Content
Figure 2.1 Schematic diagram of ozone generation by the corona discharge procedure 2-18
Figure 2.2 Reaction diagram for ozone decomposition process (Staehelin et al., 1984) 2-22
Figure 2.3 Sketch of ozonation reaction 2-26
Figure 2.4 Cyclo addition reaction 2-28
Figure 2.5 Disintegration of ozonide 2-28
Figure 2.5 Eletrophilic reaction taking phenol as an example 2-29
Figure 3.1 Chemical structures of (a) AO 6 and (b) RB 5 3-2
Figure 3.2 Experimental design 3-4
Figure 3.3 Experimental design for ozonation and the effect of optimum controlling factors 3-5
Figure 3.4 Experimental design for O3/UV and O3/UV/TiO2 3-6
Figure 3.5 Experimental design for continuous countercurrent bubble column 3-7
Figure 3.6 Experimental apparatus sketch of stirred reactor. 3-9
Figure 3.7 Bubble column reactor experimental setup. 3-12
Figure 4.1 Reduction of AO6 and UV254, and decolorization. 4-3
Figure 4.2 Variation of COD and TOC reduction and the average of COD and TOC removal rate. 4-4
Figure 4.3 Variation of (a) [NO3-], [SO42-], CTOC, and (b) [NO], [NO2] against Decolorization. 4-7
Figure 4.4 Effects of (a) Temperature and (b) pH on the Decolorization and Removals of AO6 and TOC. 4-9
Figure 4.5 Effect of ozone dose on the decolorization and TOC removal. 4-12
Figure 4.6 Variation of TOC removal efficiency (ηTOC) vs. ozone consumption ( ).
4-15
Figure 4.7 Variation of vs. TOC removal efficiency (ηTOC).
4-16
Figure 4.8 Concentration profile of pH, Amax, color, and DOC of AO 6 in a semibatch system. (a) O3 = 18.7 mg/l-min, (b) O3 = 18.7 mg/l-min with UV intensity 30 Wm-2. 4-18
Figure 4.9 Concentration profile of SO42-, NO3-, and NH4+ of AO 6 in a semibatch system. (a) O3 = 18.7 mg/l-min, (b) O3 = 18.7 mg/l-min with UV intensity 30 Wm-2. 4-23
Figure 4.10 Time-course of normalized color remaining (%) and ηDOC (%) under different experimental conditions. 4-26
Figure 4.11 (DOC0-DOC)/t vs. ηDOC (%) under different experimental conditions. 4-27
Figure 4.12 Ozone consumption ratio (%) vs. ηDOC (%) under different experimental conditions. 4-28
Figure 4.13 Variation of (a) SO42- and (b) NO3- vs. mO3R under different experimental conditions. 4-30
Figure 4.14 Variation of EC50 (%) under O3 = 18.7 mg/l-min (□) and O3 = 18.7 mg/l-min with UV intensity 30 W/m2 (○) 4-32
Figure 4.15. Time variations of dimensionless concentration of AO 6 in bulk liquid (θB) during ozonation. 4-38
Figure 4.16 Time variations of removal efficiency of TOCs (ηTOC) for AO 6 ozonation. 4-39
Figure 4.17 Time variations of dimensionless concentration of ozone in bulk liquid (θA) for AO 6 ozonation. Experimental and model prediction. 4-41
Figure 4.18 Time variations of dimensionless gas concentration of ozone in free volume (θAGe) for AO 6 ozonation. 4-42
Figure 4.19 Time variations of the enhancement factor (ErA) for AO 6 ozonation. 4-43
Figure 4.20 Comparison of experimental and calculated values of [SO42-]/[SO42-]Th to CTOC/CTOC,Th. 4-45
Figure 4.21 Results of tracer test under fixed gas flow rate (GG). (a) no gas, (b) GG = 0.9 L/min, (c) GG = 2.1 L/min 4-48
Figure 4.22 RB5 ozonation profiles of pH, A597nm, color, and TOC. 4-53
Figure 4.23 RB5 ozonation profiles of ozone concentration in liquid and off-gas, sulfate, and nitrate. 4-54
Figure 4.24 Variation profiles of (a) decolorization, (b) ηTOC, (C) ηUV, and (d) at the exist for four different gas flow rates 4-57
Figure 4.25 Variation profiles of (a) decolorization, (b) ηTOC, (C) ηUV, and (d) at the exist for four different liquid flow rates. 4-60
Figure 4.26 Correlation of ηTOC and vs. GL/GG.
4-61
Figure 4.27 O3 consumption ( ) vs. TOC/TOC0 variation at fixed liquid flow condition. 4-62
Figure 4.28 O3 consumption ( ) vs. TOC/TOC0 variation at fixed gas flow rate conditions. 4-64
Figure 4.29 Effect of O3 consumption ( ) on BOD5/COD. (a) fixed gas flow rate, (b) fixed liquid flow rate 4-65
Figure 4.30 Prediction profile for Color/Color0, TOC/TOC0, or at 2.5 HRTs under fixed liquid flow condition.
4-68
Figure 4.31 Prediction profile for Color/Color0, TOC/TOC0, or at 2.5 HRTs under fixed gas flow rate conditions. 4-90
Figure 4.32 Toxicity reduction of RB5 under different GL/GG values at τ = 2.5 4-73
Figure 4.33 Effect of ozone consumption on the toxicity reduction and at τ = 2.5.
4-73
dc.language.isoen
dc.title偶氮性染料臭氧化處理之化學降解研究zh_TW
dc.titleEffects of ozonation on degradation of Azo Dyesen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee張慶源(Ching-Yuan Chang),曾迪華(Dyi-Hwa Tseng),顧洋(Young Ku),張怡怡(E-E Chang),郝晶瑾(Oliver J. Hao),林財富(Tsair-Fuh Lin)
dc.subject.keyword臭氧化,偶氮性染料,去色,礦化,生物降解,毒性,反應速率常數,zh_TW
dc.subject.keywordOzonation,Azo dye,decolorization,mineralization,biodegradation,toxicity,reaction rate constant,en
dc.relation.page192
dc.rights.note有償授權
dc.date.accepted2006-01-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved