Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤(Tsiu-Kwen Lee)
dc.contributor.authorYen-Jen Chenen
dc.contributor.author陳彥任zh_TW
dc.date.accessioned2021-06-13T06:24:07Z-
dc.date.available2006-01-27
dc.date.copyright2006-01-27
dc.date.issued2006
dc.date.submitted2006-01-23
dc.identifier.citation[BMM] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, “Rings with Gener-alized Identities”, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
[Br1] M. Breˇsar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.
[Br2] M. Breˇsar, Commuting traces of biadditive mappings, commutativity–preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 355 (1993), 525–546.
[Br3] M. Breˇsar, On Generalized biderivations and related maps, J. Algebra 172 (1995), 746–786.
[Ch] C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer.Math. Soc. 103 (1988), 723–728.
[CL1] C.-L. Chuang and T.-K. Lee, Algebraic derivations with constants satisfying a polynomial identity, Israel J. Math. 138 (2003), 43–60.
[CL2] C.-L. Chuang and T.-K. Lee, Nilpotent derivations, J. Algebra 287(2) (2005),381–401.
[FU] C. Faith and Y. Utumi, On a new proof of Litoff’s theorem, Acta Math. Acad.Sci. Hung. 14 (1963), 369–371.
[Gr] P. Grzeszczuk, Constants of algebraic derivations, Comm. Algebra 21(6) (1993),1857–1868.
[Hv] B. Hvala, Generalized derivations in rings, Comm. Algebra 26(4) (1998), 1147–1166.
[Ja] N. Jacobson, “PI-Algebras: an Introduction”, Lecture Notes in Math. 441,Springer–Verlag, Berlin and New York, 1975.
[Kh1] V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17(1978), 220–238 (Engl. Transl., Algebra and Logic 17 (1978), 154–168).
[Kh2] V. K. Kharchenko, Differential identities of semiprime rings, Algebra i Logika 18 (1979), 86–119 (Engl. Transl., Algebra and Logic 18 (1979), 58–80).
[La] C. Lanski, Differential identities of prime rings, Kharchenko’s theorem, and ap-plications, Contemporary Mathematics 124 (1992), 111-128.
[Le1] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad.Sinica 20 (1992), 27–38.
[Le2] T.-K. Lee, Derivations with Engel conditions on polynomials, Algebra Collo-quium 5 (1998), 13–24.
[Le3] T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27(8)(1999), 4057–4073.
[LL] T.-K. Lee and T.-C. Lee, Commuting additive mappings in semiprime rings,Bull. Inst. Math. Acad. Sinica 24 (1996), 259–268.
[LM] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2,Pacific Journal of Mathematics 42 (1972), 117-136.
[LS] T.-K. Lee and W.-K. Shiue, Derivations cocentralizing polynomials, Taiwanese J. Math. 2 (1998), 457–467.
[Ma1] W. S. Martindale, 3rd, Prime rings satisfying a generalized polynomial identity,J. Algebra 12 (1969), 576-584.
[Ma2] W. S. Martindale, 3rd, On semiprime P.I. rings, Proc. Amer. Math. Soc. 40(1973), 365–369.
[Po] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957),1093–1100.
[Ro] L. H. Rowen, Maximal quotients of semiprime PI-algebras, Trans. Amer. Math.Soc. 196 (1974), 127–135.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34711-
dc.description.abstractWe show two results in this thesis. Firstly, let R be a semiprime ring with extended centroid C and with Martindale left ring of quotients R_F. Suppose that δ : R → R is a left R_F-integral derivation. Let R(δ) (resp. R_F(δ)) denote the subring of constants of δ on R (resp. R_F). We prove: (I) If the R_F-integral degree of δ is m, then δ is C-integral of degree less than or equal to m^2. (II) R(δ) and R_F(δ) satisfy the same PIs.
Secondly, let R be a prime ring with extended centroid C and let f(X_1, . . . ,X_t) be a polynomial over C, which is not central-valued on RC. Let g be a generalized derivation of R, which is not of the form x : R → λx for some λ in C. Suppose that
[g(f(x_1, . . . , x_t)), f(x_1, . . . , x_t)] in C
for all x_i in R. Then one of the following two cases holds except when charR = 2 and dim_C RC = 4:
(1) g(x) = λx + d(x) for some λ in C, where d is an X-outer derivation of R, charR = 2 and f(X_1, . . . ,X_t)2 is central-valued on RC.
(2) g(x) = ax + x(a + β) for some a in R_F and some β in C, and f(X_1, . . . ,X_t)2 is central-valued on RC.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:24:07Z (GMT). No. of bitstreams: 1
ntu-95-R92221023-1.pdf: 247021 bytes, checksum: 3ca2fb59e96dbf68b6186311d5974e6c (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents iv
Acknowledgements v
Abstract vi
1 PIs and Constants of Algebraic Derivations 1
2 Posner’s Theorem for Generalized Derivations 11
Bibliography 21
dc.language.isoen
dc.subject多項式等式zh_TW
dc.subjectMartindale除環zh_TW
dc.subject導算zh_TW
dc.subject一般化導算zh_TW
dc.subject常值zh_TW
dc.subjectconstantsen
dc.subjectderivationen
dc.subjectMartindale quotient ringen
dc.subjectgeneralized derivationen
dc.subjectpolynomial identity(PI)en
dc.title導算之常值與導算恆等式zh_TW
dc.titleConstants of Derivations and Differential Identitiesen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李白飛(Pjek-Hwee Lee),王彩蓮(Tsai-Lien Wong)
dc.subject.keywordMartindale除環,導算,一般化導算,常值,多項式等式,zh_TW
dc.subject.keywordMartindale quotient ring,derivation,generalized derivation,constants,polynomial identity(PI),en
dc.relation.page23
dc.rights.note有償授權
dc.date.accepted2006-01-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
241.23 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved