請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒 | |
| dc.contributor.author | Yi-Shia Lee | en |
| dc.contributor.author | 李宜霞 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:23:55Z | - |
| dc.date.available | 2006-01-27 | |
| dc.date.copyright | 2006-01-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-01-23 | |
| dc.identifier.citation | 王惠亮、王金池、邱人璋、孫明賢. 1978. 台灣番木瓜輪點病研究初報. 植保會刊 20: 133- 140.
王德男. 1982. 木瓜耐輪點毒素病品種之檢定. 中華農業研究. 31: 162-168. 王德男. 1991. 台灣木瓜栽培之回顧與展望. 杜金池,程永雄,顏昌瑞主編. 台灣果樹之生產及研究發展研討會專刊 357-371. 台灣省農業試驗所試驗特刊第35號. 王震宇. 1988. 木瓜輪點病毒系統之細胞病理學研究. 國立台灣大學植物病蟲害學研究所碩士論文. pp.50. 王啟正. 1997. 番木瓜抗木瓜輪點病毒遺傳差異性之研究. 國立台灣大學園藝學研究所碩士論文. pp. 107. 王仁晃. 2001. 木瓜輪點病毒對番木瓜抗感病品種(系)光合成的影響. 國立臺灣大學園藝學研究所碩士論文. pp. 86. 吉井三惠子. 1986. 影響木瓜輪點病毒病徵表現與變異之因素. 台灣大學植物病蟲害研究所碩士論文. pp.128. 林正忠. 1980. 木瓜輪點毒素病之系統及交叉保護. 國立臺灣大學植物病蟲害學研究所博士論文. pp . 115. 林育萱. 2004. 柑桔破葉病毒系統之鑑別與快速偵測方法之研發. 國立台灣大學植物病理與微生物學研究所碩士論文. pp.75. 徐悅淳. 2001. 重要potyvirus快速鑑定系統之建立. 台灣大學植物病理學研究所碩士論文. pp.33. 翁芬華. 1981. 木瓜輪點病毒之變異性. 台灣大學植物病蟲害研究所碩士論文. pp.73. 張春蕉. 1995. 番木瓜輪點病的增殖與擴散. 國立台灣大學園藝所碩士論文. pp. 64. 張世揚. 2000. 植物防疫之重要性. 苗栗區農情月刊10: 1-2. 陳光慧. 1986. 對木瓜輪點病病毒之單源抗體試製與其對病毒系統之血清學反應. 台灣大學植物病蟲害研究所碩士論文. pp.129. 陳脈紀、劉顯達、王惠亮、位國慶、邱人璋. 1976. 木瓜輪點病之電子顯微鏡觀察. 植物保護學會會刊論文摘要 18:399. 陳脈紀. 1984. 木瓜輪點病毒之電子顯微鏡觀察. 植物保護學會會刊. 26: 23-31. 葉錫東. 1999. 轉基因作物應用於植物保護之現況. 植物保護學會會刊. 4:87-106. 葉慈容. 2004. 利用逆墨點雜合法鑑定九種馬鈴薯Y屬病毒. 國立台灣大學植物病理與微生物學研究所碩士論文. pp.55. 農業統計年報. 2004. 行政院農業委員會網站(http://bulletin.coa.gov.tw/htmlarea_file/web_articles/5298/098.pdf) 廖奕晴. 2004. 台灣木瓜輪點病毒系統之變異與鑑別及快速檢測. 國立台灣大學植物病理與微生物學研究所碩士論文. pp.107. 蔡文惠. 1995. 木瓜接種不同輪點病毒系統後的反應. 國立台灣大學園藝所碩士論文. pp. 66. 關政平. 1990. 木瓜輪點病毒之單元抗體的特異性. 台灣大學植物病蟲害研究所碩士論文. pp.127. Adsuar, J. 1946. Studied on virus disease of papaya (Carica papaya) in PuertoRico III-Property studies of papaya mosaic virus. Univ. Puerto Rico Agr. Expt. Sta. Tech. 4: 7-11. Adsuar, J. 1972. A new virus disease of papaya(Carica papaya) in Puerto Rico. J. Agric. Univ. P. R. 56: 397-402. Attasart, P., Charoensilp, G., Kertbundit, S., Panyim, S., and Juricek, M. 2002. Nucleotide sequence of a Thai isolate of Papaya ringspot virus type W. Acta Virol. 46: 241-246. Bateson, M.F., Lines, R.E., Revill, P., Chaleeprom, W., Ha, C.V., Gibbs, A.J., and Dale, J.L. 2002. On the evolution and molecular epidemiology of the potyvirus Papaya ringspot virus. J. Gen. Virol. 83: 2575–2585. Bau, H.J., Cheng, Y.H., Yu, T.A., Yang, J.S., and Yeh, S.D. 2003. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93: 112-120. Bayot, R.G., Villegas, V.N., Magdalita, P.M., Jovellana, M.D., Espino, T.M., and Exconde, S.B. 1990. Seed transmissibility of papaya ringspot virus. Philippine J. Crop Sci. 15(2): 107-111. Brunt, A., Crabtree, K., and Gibbs, A. 1990. Virus of tropical plants: papaya ringspot potyvirus. CABI Wallingford U. K. 374-377. Capoor, S.P. and Varma, P.M. 1948. A mosaic disease of Carica papaya L. in the Bombay Province. Curr. Sci. 17: 265-266. Capoor, S.P. and Varma, P.M. 1956. A mosaic disease of papaya in Bombay. Indian J. Agr. Sci. 28: 225-233. Chomczynski, P. and Sacchit, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. Cohen, L.W., Coghlan, V.M. and Dihel, L.C. 1986. Cloning and sequencing of papain-encoding cDNA. Gene 48: 219-227. Conover, R.A. 1962. Virus disease of the papaya in Florida. Phytopathology 52: 6. Cook, A.A. and Milbrath, G. 1971. Virus disease of papaya on Oahu (Hawaii) and identification of additional diagnostic host plants. Plant Dis. Rep. 55: 785-787. Cook, A.A. 1972. Virus disease of papaya. Fla. Agr. Expt. State Inst. Food and Agr. Sci. 1-9. Davis, R.I., Mu, L., Maireroa, N., Wigmore, W.J., Grisoni, M., Bateson, M.F., and Thomas, J.E. 2005. First records of the papaya strain of Papaya ringspot virus (PRSV-P) in French Polynesia and the Cook Islands. Aust. Plant Pathol. 34: 125-126. De Bokx, J.A. 1965. Hosts and electron microscopy of two papaya viruses. Plant Dis. Rep. 49: 742-746. De la Rosa, M. and Lastra, R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathology 106: 329-336. Edwardson, J.R. 1974. Some properties of the potato virus Y group. Fla. Agric. Exp. Stn. Monogr. 4. 398. Edwardson, J.R., Christie, R.G., and Ko, N.J. 1984. Potyvirus cylindrical inclusion-Subdivision-IV. Phytopathology 74: 1111-1114. Gibbs, A. and Mackenzie, A. 1997. A primer pair for amplifying part of the genome of all potyvirids by RT-PCR. J. Virol. Meth. 63: 9-16. Gonsalves, D. and Ishii, M. 1980. Purification and serology of papaya ringspot virus. Phytopathology 70: 1028–1032. Gonsalves, D. 1998. Control of papaya ringspot virus in papaya: a case study. Ann. Rev. Phytopathology 36: 415-37. Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M. 1996. Real time quantitative PCR. Genome Res. 6: 986-994. Higuchi, R., Dollinger, G., Walsh, P.S., and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413-417. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026-1030. Holland, P.M., Adbramson R.D., Watson, R., and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Pro. Natl. Acad. Sci. U.S.A. 88: 7276-7280. Hung, T.H., Wu, M.L., and Su, H.J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147: 599-604. Hung, T.H., Wu, M.L., and Su, H.J. 2000. A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of citrus tristeza virus. J. Phytopathol. 148: 469-475. Ishii, M. and Holtzamann, O.V. 1963. Papaya mosaic disease in Hawaii. Plant Dis. Rep. 47: 947-951. Ishii, M. 1972. Observations on the spread of papaya ringspot virus in Hawaii. Plant Dis. Rep. 56: 331-333. Jensen, D.D. 1949a. Papaya virus diseases with special reference to papaya ringspot. Phytopathology 39:191-211. Jensen, D.D. 1949b. Papaya ringspot virus and its insect vector relationships. Phytopathology 39: 212-220. Khurana, S.M. and Bhargava, K.S. 1970. Induce apocarpy and “double papaya” fruit formation in papaya with distortion ringspot virus infection. Plant Dis. Rep. 54:181-183. Kiritani, K. and Su, H.J. 1999. Papaya ring spot, banana bunchy top, and citrus greening in Asia and Pacific region:occurrence and control strategy. FFTC. 33:23-30. Lin, C.C., Su, H.J., and Wang, D.N. 1989. The control of papaya ringspot virus in Taiwan R.O.C. ASPAC Food and Fertilizer Tech. 114: 1-13. Lindner, R.C., Jensen, D.D. and Ikeda, W. 1945. Ringspot: new papaya plunderer. Hawaii Farm and Home 8: 10-14. Levy, L., Lee, I.M. and Hadidi, A. 1994. Simple and rapid preparation of infected plant tissue extracts for PCR amplification of virus, viroid, and MLO nucleic acids. J. Virol. Meth. 49: 295–304. Livak K.J., Flood, S.P.A., Marmejo J., Giusti W. and Deetz K., 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR products and nucleic acid hybridization, PCR Methods Appl. 4: 357–362. Namba, R. and Higa, S.Y. 1977. Retention of the inoculativity of the papaya mosaic virus by the green peach aphid. Proc. Haw. Ent. Soc. 22: 491-494. Overbergh, L., Giulietti, A., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. 2003. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J. Biomol. Tech. 14: 33-43. Pourrahim, R., Farzadfar, Sh., Golnaraghi, A.R., and Shahraeen, N. 2003. First report of papaya ringspot virus on papaya in Iran. Plant Dis. 87: 1148. Purcifull, D.E., Edwardson, J., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses, No. 292 (No. 84 revised). Quemada, H., L'Hostis, B., Gonsalves, D., Reardon, I.M., Heinrikson, R., Hiebert, E.L., Sieu, L.C. and Slightom, J.L. 1990. The nucleotide sequences of the 3´-terminal regions of papaya ringspot virus strains W and P. J. Gen. Virol. 71: 203–210. Quiot-Douine, L., Purcifull, D.E., Hiebert, E., and de Mejia, M.V.G. 1986. Serological relationships and in vitro translation of an antigenically distinct strain of papaya ringspot virus. Phytopathology 76: 346-351. Ridings, W.H., Zettler, F.W., and Conover, R.A. 1978. Distortion ringspot of papaya. Plant Path. Cir. No. 184. Fla. Dept. Agr. and Consume Serv. Div. of Plant Industry. Robaglia, C., Durand-Tardif, M., Tronchet, M., Boudazin, G., Astier-Manifacier, S., and Casse-Delbart, F. 1989. Nucleotide sequence of potato virus Y (N Strain) genomic RNA. J. Gen. Virol. 70: 935-47. Schaad, N.W. and Frederick, R.D. 2002. Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 24: 250-258. Schaefers, G.A. 1969. Aphid vectors of the papaya mosaic virus in Puerto Rico. J. Agr. Univ. Pur Puerto Rico. 53:1-13. Schneider, W.L., Sherman, D.J., Stone, A.L., Damsteegt, V.D., and Frederick, R.D. 2004. Specific detection and quantification of Plum pox virus by real-time fluorescent reverse transcription-PCR. J. Virol. Meth. 120: 97-105. Silva-Rosales, L., Becerra-Leor, N., Ruiz-Castro, S., Téliz-Ortiz, D., and Noa-Carrazana, J.C. 2000.Coat protein sequence comparisons of three Mexican isolates of papaya ringspot virus with other geographical isolates reveal a close relationship to American and Australian isolates. Arch. Virol. 145: 835-843. Singh, A.B. 1969. A new virus disease of Carica papaya in India. Plant Dis. Rep. 53: 267-269. Singh, A.B. 1971. Transmission of papaya leaf reduction virus by Myzus persicae. Plant Dis. Rep. 55: 526-529. Smith, F.E.V. 1928. Plant disease in Jamaica in 1928. Ann. Rep. Agr. Jamaica for the year ended 31st Dec. p. 1-20. Story, G.E. and Haliiwell, R.S. 1969. Identitification of distortion ringspot virus disease of papaya in the Domincan Republic. Plant Dis. Rep. 53: 757-760. Thomas, J.E. and Dodman, R.L. 1993. The first record of papaya ringspot virus-type P in Australia. Aust. Plant Pathol. 22: 2-7. Tennant, P.F., Gonsalves, C., Ling, K.S., Fitch, M., Manshardt, R., Slightom, L.J, and Gonsalves, D. 1994. Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84:1359-1366. Tennant, P., Fermin, G., Fitch, M.M., Manshardt, R.M., Slightom, J.L., and Gonsalves, D. 2001. Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. Euro. J. Plant Pathol. 107: 645-653. Valasek, M.A. and Joyce, J.R. 2005. The power of real-time PCR. Adv. Physiol. Educ. 29: 151-159. Walker, N.J. 2002. A technique whose time has come. Science 296: 557-558. Wang, C., Bau, H., and Yeh, S. 1994. Comparison of the nuclear inclusion b protein and coat protein genes of five Papaya ringspot virus strain distinct in geographic origin and pathogenicity. 84: 1205-1210. Wang, C. H. and Yeh, S. D. 1997. Divergence and conservation of the genomic RNAs of Taiwan and Hawaii strains of papaya ringspot potyvirus. Arch. Virol. 142: 271-285. Wang, H.L., Yen, S.D., Chiu, R.J., and Gonsalves, D. 1987. Effectiveness of cross-protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant dis. 71: 491-497. Wittwer, C.T., Herrmann, M.G., Moss, A.A. and Rasmussen, R.P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques.22, 130-131, 134-138. Yeh, S.D. and Gonsalves, D. 1984a. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74: 1086-1091. Yeh, S.D., Gonsalves, D., and Provvidenti, R. 1984b. Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74: 1081-1085. Yeh, S.D. and Gonsalves, D. 1985. Translation of PRSV RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virol. 143: 260-271. Yeh, S.D., Gonsallves, D., Wang, H.L., Namba, R., and Chiu, R.J. 1988. Control of papaya ringspot virus by cross protection. Plant Dis. 72: 375-380. Yeh, S.D., Jan, F.J., Chiang, C.H., Doong, T.J., Chen, M.C., Chung, P.H., and Bau, H.J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73, 2531-2541. Yeh, S.D. 1994. Comparison of the genetic organization of papaya ringspot virus with other potyvirus. Plant Pathol. 3: 54-64. Zettler, F.W., Edwardson, J.R., and Purcifull, D.E. 1968. Ultramicropic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission. Phytopathology 58: 332-335. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34708 | - |
| dc.description.abstract | 木瓜輪點病(papaya ringspot)是木瓜最重要病害之一,嚴重影響木瓜產業。台灣於1975年發現後即迅速傳播至全省各木瓜主要產地。此病由木瓜輪點病毒(Papaya ringspot virus, PRSV)所引起。目前在台灣的PRSV又可依據在木瓜上引起病徵的不同,再細分成各種不同系統(strains),包括可引起葉片產生嚴重嵌紋病徵的嚴重嵌紋系統(severe mottling, SM strain)、造成葉片嚴重嵌紋且畸形扭曲的畸形系統(deformation, DF strain),以及造成葉片嚴重嵌紋且伴隨有壞疽病斑的嚴重嵌紋壞疽系統(severe mottling with necrosis, SMN strain),SMN系統更會在冷熱交替之際造成快速萎凋的病徵。過去在台灣木瓜栽植區所見到的病徵大多是以SM系統為主。但是,近年來台灣田間罹病木瓜多被DF與SMN系統漸漸取代。以本研究室所保存之純系病毒株,利用5’ RACE與3’ RACE的兩端定序,完成此三系統的全長定序,其核酸序列總長度皆為10326 nt。根據全長序列分析結果顯示出SM與DF的核酸序列相似度達97.3%,而SMN與它們的相似度分別為97.0%與96.8%。此三系統的各基因核酸序列相似度約在95∼100%之間,唯有在P1基因的核酸序列相似度低於95%,並發現他們在5’UTR(untranslated region)相似度更低,僅91.8∼92.9%。進一步比對此三系統與其他國內外PRSV分離株的核酸與胺基酸序列,發現SM與DF系統親源關係最近似,SMN系統次之,而三系統與台灣永康分離株歸屬同一關係群,而與國外分離株親源關係較低。目前對三個不同的PRSV系統,已研發出RT-PCR快速偵測法,以改過的TRIzol reagent方法,可以有效減少抽取核酸所花費時間,且利用全長序列分析結果設計另一通用性引子對PRSV-829,為一改良過的引子對,可提供更高專一性與正確性的PRSV偵測,尤其可避免對轉基因木瓜(植入PRSV的鞘蛋白基因)產生的偽陽性反應。為了更進一步對不同PRSV系統在木瓜寄主體內做定量追蹤,將real-time RT-PCR技術應用於PRSV的偵測與消長動態分析。在本論文,將SYBR Green與TaqMan primer/probe兩種方法同步進行偵測設計。在SYBR Green方法方面,利用5’UTR與部分P1基因序列設計出通用性引子對PRSV-159,但結果不如預期,僅對SM與SMN兩系統有預期的螢光值增加曲線,DF系統則無;然而此方法對SM系統敏感度極佳,即使模版量僅約0.2 ng都可利用此法測得,做成的相對定量曲線也符合預期,顯示SYBR Green法在條件合適狀況下,仍可獲得對SM系統相當好的偵測效果。在TaqMan primer/probe方法方面,利用鞘蛋白基因(CP gene)中的保守性區域設計出三系統皆可通用的TaqMan primer/probe套組(命名為TP-PRSV),預計增幅長度約95 bp,並在其中設計一條16 nt的TaqMan probe以進行螢光偵測,實驗證實定量偵測的效果良好,且其敏感度更勝SYBR Green系統。進一步,也利用三系統在P1基因序列上的相異處,另設計三套具系統特異性的TaqMan primer/probe套組,分別命名為TP-DF,TP-SM及TP-SMN,實驗結果也顯示三個病毒系統的專一性定量偵測效果相當良好。為了追蹤PRSV之不同系統在接種後,於木瓜寄主體內繁殖量的變化情形,本論文挑選目前病徵呈田間優勢的DF系統與極具威脅性的SMN系統,單獨或混合接種於番木瓜之紅妃品系上,再以上述研發的real-time RT-PCR技術追蹤PRSV在寄主體內之增殖情況。結果顯示單獨感染DF系統時,在第10天病毒訊號即明顯出現,隨後增殖曲線開始攀升至第16天達第一個高峰,第16~22天呈現停滯,但第24天後病毒訊號就速攀第二高峰而進入高原期;單獨感染SMN系統時,在第10天即開始測得明顯訊號,隨即呈現線性上升,至第18天後病毒訊號可達高峰。至於複合感染DF與SMN系統的木瓜植株,DF系統直到第16天才測得第一個病毒訊號,至第18天訊號迅速上升,至第22天病毒訊號達高峰;SMN系統在第18天以前幾乎測不到病毒訊號,至第18天測得第一個訊號,第22天後訊號迅速達到高峰。因此,利用此套real-time RT-PCR不但可以同步定量目標病毒系統,而其應用性也相當廣,不但可以研究不同木瓜輪點病毒系統,在寄主體內的增殖動態,未來進一步建立real-time RT-PCR的標準定量曲線,更可將此技術發展至PRSV之絕對定量,以供木瓜輪點病的發病生態相關研究使用。 | zh_TW |
| dc.description.abstract | Papaya ringspot is one of the most destructive diseases of papaya and it is a limiting factor for papaya industry. This disease first occurred in Taiwan in 1975, and it has spreading widely throughout all of papaya-cultivated areas in Taiwan. It is caused by Papaya ringspot virus (PRSV), which belongs to Potyvirus, Potyviridae. According to the different symptoms in papaya hosts, PRSV was divided into three major strains including SM (severe mottling), DF (severe mottling with leaf-deformation) and SMN (severe mottling with necrosis and quick decline) strains. SM was a predominant strain of PRSV in the field of Taiwan several years ago. However, DF and SMN have recently become newly rising dominant strains. Almost full-length of genomic sequences of three PRSV strains were determined in the previous study. Continuous sequencing was conducted in this study. The complete nucleotide sequences (10326 bases) of three strains were determined by application of 5’ RACE and 3’ RACE systems. They encode a polyprotein of 3344 amino acids with a 5’ untranslated region of 85 nucleotides and a 3’ untranslated region of 209 nucleotides. The results of alignment of full genomic nucleotide sequences demonstrated that SM is 97.3% identical to DF, and SMN is 97.0% and 96.8% identical to SM and DF. Most genes in the PRSV genome among the three strains are 95~100% homologous, but the P1 gene and 5’ UTR region are about 95% and 92% homologous among three different strains, respectively. Phylogenic analysis of various international PRSV isolates revealed that SM, DF and SMN are close to the Yung-Kang isolate (another PRSV isolate from Taiwan), but far away from the Thailand and Hawaii isolates. The rapid assay based on reverse transcription-polymerase chain reaction (RT-PCR) with the primer pair PRSV-857 was developed for the detection of PRSV in previous study. Another primer pair PRSV-829 was devised in our study, and it has been proven to achieve better specificity and sensitivity in PRSV detections. In addition, the real-time RT-PCR technology was applied for quantitative monitoring of different PRSV strains in papaya hosts. Both “SYBR Green” and “TaqMan primer/probe” methods were adopted to develop the quantitative detection of PRSV with real-time RT-PCR, and “TaqMan primer/probe” method obtained more satisfactory results. A TaqMan primer/probe combination (named TP-PRSV), selected from the conserved regions of coat protein gene, was designed for the common detections of PRSV. Three primer/probe kits (named TP-DF, TP-SM, and TP-SMN), selected from the variable regions of P1 gene, were also developed for the strain-specific quantitative detection of the DF, SM and SMN strain, respectively. Our devised real-time RT-PCR assays were further applied to monitor the virus multiplicative dynamics in papaya hosts in the inoculation tests with different PRSV strains. When the papaya hosts (cultivar FR) were inoculated with the DF strain, PRSV could be detected 10 days after inoculation. The replication curve (DF) was increasing linearly from the 10th to 16th day, stationary from the 16th to 22th day, and reaching to the peak 24 days after inoculation. When the papayas were inoculated with the SMN strain, PRSV could be detected 10 days after inoculation. The replication curve (SMN) was increasing linearly from the 10th to 18th day, and reaching to the peak 18 days after inoculation. When the papayas were inoculated with both DF and SMN strains, DF could be detected 16 days after inoculation. The replication curve (DF) was increasing linearly from the 16th to 22th day, and reaching to the peak 22 days after inoculation. On the other hand, SMN could be detected 18 days after inoculation. The replication curve (SMN) was increasing linearly from the 18th to 22th day, and reaching to the peak 22 days after inoculation. The development of real-time RT-PCR assays of PRSV is helpful to the ecological studies of papaya ringspot disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:23:55Z (GMT). No. of bitstreams: 1 ntu-95-R92633004-1.pdf: 3458744 bytes, checksum: e39a4d2b9ed33a80dfe5bb03a7323e90 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要.......Ⅰ
英文摘要.......Ⅲ 目錄..............Ⅴ 壹、前言.............1 貳、前人研究..........4 一、 木瓜輪點病介紹.........4 二、 木瓜輪點病毒分類與基本特性.................4 三、 木瓜輪點病毒之傳播方式............5 四、 木瓜輪點病毒寄主範圍及病徵...........6 五、 台灣木瓜輪點病毒之系統..................7 六、 木瓜輪點病毒之電顯觀察與細胞病理......8 七、 木瓜輪點病毒系統之序列............9 八、 木瓜輪病毒之偵測方式...............9 九、 即時定量聚合酶連鎖反應(real-time PCR)之研發...10 參、材料方法........12 一、 試驗植物之準備........12 二、 PRSV系統來源與保存.......12 三、 PRSV之分子特性分析........13 (一)、DF、SM、SMN系統5’端及3’端解序.......13 1. PRSV的 5’端解序....................13 2. PRSV的 3’端解序...................14 3. PCR產物電泳膠體分析................15 4. PCR產物之選殖與定序...........15 四、 改良之PRSV的快速偵測法.................16 (一)、核酸抽取法.............................16 1. Total nucleic acid extract method.............16 2. Modified TRIzol reagent method...............17 (二)、設計新通用性引子對(common primer).........17 1. 引子對設計...........................17 2. RT-PCR增幅反應....................18 (1). One-step RT-PCR增幅..............18 (2). Two-step RT-PCR增幅............18 3. RT-PCR增幅反應中不同黏合溫度之比較....18 五、 Real-time RT-PCR定量偵測技術之研發........19 (一)、RNA總含量之吸光值定量....................19 (二)、Reverse transcription...................19 (三)、SYBR Green法.........................20 1. 引子對的設計.........................20 2. Real-time PCR / SYBR Green操作流程......20 (四)、TaqMan primer/probe法...........20 1. TaqMan primer/probe設計...............21 (1). Common PRSV TaqMan primer/probe............21 (2). Specific PRSV TaqMan primer/probe.........21 2. Real-time PCR / TaqMan primer/probe 操作流程......21 肆、結果.................................22 一、 DF、SM、SMN系統病徵與純系分析.............22 二、 DF、SM、SMN系統5’端及3’端解序..............22 三、 三系統與國內外發表的PRSV-P全長序列比對分析.....23 四、 核酸萃取法之效果比較..............24 五、 新設計的通用性引子對之偵測效果..........24 六、 Real-time RT-PCR定量偵測技術之研發.......25 (一)、SYBR Green法...............25 1. 引子對的設計.....................25 2. Real-time PCR / SYBR Green方法之研發........26 3. 精準度與敏感度試驗......26 (二)、TaqMan primers/probes法.............26 1. TaqMan primers/probes設計.........26 (1). 通用性TaqMan primers/Probes之設計.......26 (2). 系統專一性TaqMan primers/probes之設計..........27 2. Real-time PCR / TaqMan 方法之研發.........28 3. 精準度與敏感度試驗...........28 七、 Real-time RT-PCR應用於感染不同PRSV系統生態試驗..28 伍、討論......................30 陸、參考文獻....................................36 柒、圖表....................44 捌、附錄...........78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 定量偵測技術 | zh_TW |
| dc.subject | 木瓜輪點病毒 | zh_TW |
| dc.subject | Papaya ringspot potyvirus | en |
| dc.subject | real-time RT-PCR | en |
| dc.title | 木瓜輪點病毒之Real-Time RT-PCR定量偵測技術之研發與應用 | zh_TW |
| dc.title | Development and Application of the Quantitative Detection of Papaya ringspot potyvirus Based on Real-Time RT-PCR Technique | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇鴻基,張龍生,沈湯龍 | |
| dc.subject.keyword | 木瓜輪點病毒,定量偵測技術, | zh_TW |
| dc.subject.keyword | Papaya ringspot potyvirus,real-time RT-PCR, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-01-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
