Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智芬(Zee-Fen Chang)
dc.contributor.authorHsiao-Hui Leeen
dc.contributor.author李曉暉zh_TW
dc.date.accessioned2021-06-13T06:23:01Z-
dc.date.available2007-02-08
dc.date.copyright2006-02-08
dc.date.issued2006
dc.date.submitted2006-01-24
dc.identifier.citation1. Coleman M.L. andOlson M.F. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9: 493-504, 2002.
2. Hall A. Rho GTPases and the actin cytoskeleton. Science 279: 509-514, 1998.
3. Aznar S. andLacal J.C. Rho signals to cell growth and apoptosis. Cancer Lett 165: 1-10, 2001.
4. Kaibuchi K., Kuroda S. and Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68: 459-486, 1999.
5. Etienne-Manneville S. andHall A. Rho GTPases in cell biology. Nature 420: 629-635, 2002.
6. Ren X.D., Wang R., Li Q., Kahek L.A., Kaibuchi K. and Clark R.A. Disruption of Rho signal transduction upon cell detachment. J Cell Sci 117: 3511-3518, 2004.
7. Van Aelst L. andD'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 11: 2295-2322, 1997.
8. Song Y., Hoang B.Q. and Chang D.D. ROCK-II-induced membrane blebbing and chromatin condensation require actin cytoskeleton. Exp Cell Res 278: 45-52, 2002.
9. Coleman M.L., Sahai E.A., Yeo M., Bosch M., Dewar A. and Olson M.F. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3: 339-345, 2001.
10. Sebbagh M., Renvoize C., Hamelin J., Riche N., Bertoglio J. and Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3: 346-352, 2001.
11. Leung T., Manser E., Tan L. and Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270: 29051-29054, 1995.
12. Nakagawa O., Fujisawa K., Ishizaki T., Saito Y., Nakao K. and Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392: 189-193, 1996.
13. Leung T., Chen X.Q., Manser E. and Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16: 5313-5327, 1996.
14. Matsui T., Amano M., Yamamoto T., Chihara K., Nakafuku M., Ito M., Nakano T., Okawa K., Iwamatsu A. and Kaibuchi K. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. Embo J 15: 2208-2216, 1996.
15. Riento K. andRidley A.J. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4: 446-456, 2003.
16. Mueller B.K., Mack H. and Teusch N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4: 387-398, 2005.
17. Alberts A.S., Bouquin N., Johnston L.H. and Treisman R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem 273: 8616-8622, 1998.
18. Jacobs M.D., Hayakawa K., Swenson L., Bellon S.F., Fleming M., Taslimi P. and Doran J. The structure of dimeric rock 1 reveals the mechanism for ligand selectivity. J Biol Chem, 2005.
19. Doran J.D., Liu X., Taslimi P., Saadat A. and Fox T. New insights into the structure-function relationships of Rho-associated kinase: a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications. Biochem J 384: 255-262, 2004.
20. Amano M., Chihara K., Nakamura N., Kaneko T., Matsuura Y. and Kaibuchi K. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 274: 32418-32424, 1999.
21. Amano M., Fukata Y. and Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res 261: 44-51, 2000.
22. Shimizu H., Ito M., Miyahara M., Ichikawa K., Okubo S., Konishi T., Naka M., Tanaka T., Hirano K., Hartshorne D.J. and et al. Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem 269: 30407-30411, 1994.
23. Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M., Yamamori B., Feng J., Nakano T., Okawa K., Iwamatsu A. and Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245-248, 1996.
24. Kawano Y., Fukata Y., Oshiro N., Amano M., Nakamura T., Ito M., Matsumura F., Inagaki M. and Kaibuchi K. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 147: 1023-1038, 1999.
25. Feng J., Ito M., Ichikawa K., Isaka N., Nishikawa M., Hartshorne D.J. and Nakano T. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 274: 37385-37390, 1999.
26. Velasco G., Armstrong C., Morrice N., Frame S. and Cohen P. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Lett 527: 101-104, 2002.
27. Amano M., Ito M., Kimura K., Fukata Y., Chihara K., Nakano T., Matsuura Y. and Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271: 20246-20249, 1996.
28. Totsukawa G., Yamakita Y., Yamashiro S., Hartshorne D.J., Sasaki Y. and Matsumura F. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150: 797-806, 2000.
29. Kureishi Y., Kobayashi S., Amano M., Kimura K., Kanaide H., Nakano T., Kaibuchi K. and Ito M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272: 12257-12260, 1997.
30. Ohashi K., Nagata K., Maekawa M., Ishizaki T., Narumiya S. and Mizuno K. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275: 3577-3582, 2000.
31. Sumi T., Matsumoto K. and Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276: 670-676, 2001.
32. Agnew B.J., Minamide L.S. and Bamburg J.R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem 270: 17582-17587, 1995.
33. Maekawa M., Ishizaki T., Boku S., Watanabe N., Fujita A., Iwamatsu A., Obinata T., Ohashi K., Mizuno K. and Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895-898, 1999.
34. Arber S., Barbayannis F.A., Hanser H., Schneider C., Stanyon C.A., Bernard O. and Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805-809, 1998.
35. Fukata Y., Oshiro N., Kinoshita N., Kawano Y., Matsuoka Y., Bennett V., Matsuura Y. and Kaibuchi K. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol 145: 347-361, 1999.
36. Kimura K., Fukata Y., Matsuoka Y., Bennett V., Matsuura Y., Okawa K., Iwamatsu A. and Kaibuchi K. Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase. J Biol Chem 273: 5542-5548, 1998.
37. Sato N., Funayama N., Nagafuchi A., Yonemura S. and Tsukita S. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci 103 ( Pt 1): 131-143, 1992.
38. Matsui T., Maeda M., Doi Y., Yonemura S., Amano M., Kaibuchi K. and Tsukita S. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140: 647-657, 1998.
39. Tominaga T. andBarber D.L. Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 9: 2287-2303, 1998.
40. Tominaga T., Ishizaki T., Narumiya S. and Barber D.L. p160ROCK mediates RhoA activation of Na-H exchange. Embo J 17: 4712-4722, 1998.
41. Denker S.P., Huang D.C., Orlowski J., Furthmayr H. and Barber D.L. Direct binding of the Na--H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 6: 1425-1436, 2000.
42. Arimura N., Inagaki N., Chihara K., Menager C., Nakamura N., Amano M., Iwamatsu A., Goshima Y. and Kaibuchi K. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275: 23973-23980, 2000.
43. Hall C., Brown M., Jacobs T., Ferrari G., Cann N., Teo M., Monfries C. and Lim L. Collapsin response mediator protein switches RhoA and Rac1 morphology in N1E-115 neuroblastoma cells and is regulated by Rho kinase. J Biol Chem 276: 43482-43486, 2001.
44. Goto H., Kosako H., Tanabe K., Yanagida M., Sakurai M., Amano M., Kaibuchi K. and Inagaki M. Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J Biol Chem 273: 11728-11736, 1998.
45. Kosako H., Amano M., Yanagida M., Tanabe K., Nishi Y., Kaibuchi K. and Inagaki M. Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase. J Biol Chem 272: 10333-10336, 1997.
46. Hashimoto R., Nakamura Y., Goto H., Wada Y., Sakoda S., Kaibuchi K., Inagaki M. and Takeda M. Domain- and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem Biophys Res Commun 245: 407-411, 1998.
47. Kaneko T., Amano M., Maeda A., Goto H., Takahashi K., Ito M. and Kaibuchi K. Identification of calponin as a novel substrate of Rho-kinase. Biochem Biophys Res Commun 273: 110-116, 2000.
48. Nagumo H., Ikenoya M., Sakurada K., Furuya K., Ikuhara T., Hiraoka H. and Sasaki Y. Rho-associated kinase phosphorylates MARCKS in human neuronal cells. Biochem Biophys Res Commun 280: 605-609, 2001.
49. Izawa T., Fukata Y., Kimura T., Iwamatsu A., Dohi K. and Kaibuchi K. Elongation factor-1 alpha is a novel substrate of rho-associated kinase. Biochem Biophys Res Commun 278: 72-78, 2000.
50. Li Z., Dong X., Wang Z., Liu W., Deng N., Ding Y., Tang L., Hla T., Zeng R., Li L. and Wu D. Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7: 399-404, 2005.
51. Fujisawa K., Fujita A., Ishizaki T., Saito Y. and Narumiya S. Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J Biol Chem 271: 23022-23028, 1996.
52. Fujisawa K., Madaule P., Ishizaki T., Watanabe G., Bito H., Saito Y., Hall A. and Narumiya S. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem 273: 18943-18949, 1998.
53. Chen X.Q., Tan I., Ng C.H., Hall C., Lim L. and Leung T. Characterization of RhoA-binding kinase ROKalpha implication of the pleckstrin homology domain in ROKalpha function using region-specific antibodies. J Biol Chem 277: 12680-12688, 2002.
54. Feng J., Ito M., Kureishi Y., Ichikawa K., Amano M., Isaka N., Okawa K., Iwamatsu A., Kaibuchi K., Hartshorne D.J. and Nakano T. Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 274: 3744-3752, 1999.
55. Ward Y., Yap S.F., Ravichandran V., Matsumura F., Ito M., Spinelli B. and Kelly K. The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol 157: 291-302, 2002.
56. Olson M.F. Gem GTPase: between a ROCK and a hard place. Curr Biol 12: R496-498, 2002.
57. Riento K., Guasch R.M., Garg R., Jin B. and Ridley A.J. RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23: 4219-4229, 2003.
58. Riento K., Totty N., Villalonga P., Garg R., Guasch R. and Ridley A.J. RhoE function is regulated by ROCK I-mediated phosphorylation. Embo J 24: 1170-1180, 2005.
59. Breitenlechner C., Gassel M., Hidaka H., Kinzel V., Huber R., Engh R.A. and Bossemeyer D. Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity. Structure (Camb) 11: 1595-1607, 2003.
60. Inada H., Togashi H., Nakamura Y., Kaibuchi K., Nagata K. and Inagaki M. Balance between activities of Rho kinase and type 1 protein phosphatase modulates turnover of phosphorylation and dynamics of desmin/vimentin filaments. J Biol Chem 274: 34932-34939, 1999.
61. Jimenez B., Arends M., Esteve P., Perona R., Sanchez R., Ramon y Cajal S., Wyllie A. and Lacal J.C. Induction of apoptosis in NIH3T3 cells after serum deprivation by overexpression of rho-p21, a GTPase protein of the ras superfamily. Oncogene 10: 811-816, 1995.
62. Esteve P., Embade N., Perona R., Jimenez B., del Peso L., Leon J., Arends M., Miki T. and Lacal J.C. Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene 17: 1855-1869, 1998.
63. Dubreuil C.I., Winton M.J. and McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 162: 233-243, 2003.
64. Narumiya S., Ishizaki T. and Uehata M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325: 273-284, 2000.
65. Lai J.M., Wu S., Huang D.Y. and Chang Z.F. Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21(Cip1/Waf1) in phorbol 12-myristate-13- acetate-induced apoptotic cells. Mol Cell Biol 22: 7581-7592, 2002.
66. Burd C.G., Swanson M.S., Gorlach M. and Dreyfuss G. Primary structures of the heterogeneous nuclear ribonucleoprotein A2, B1, and C2 proteins: a diversity of RNA binding proteins is generated by small peptide inserts. Proc Natl Acad Sci U S A 86: 9788-9792, 1989.
67. McAfee J.G., Soltaninassab S.R., Lindsay M.E. and LeStourgeon W.M. Proteins C1 and C2 of heterogeneous nuclear ribonucleoprotein complexes bind RNA in a highly cooperative fashion: support for their contiguous deposition on pre-mRNA during transcription. Biochemistry 35: 1212-1222, 1996.
68. Rech J.E., LeStourgeon W.M. and Flicker P.F. Ultrastructural morphology of the hnRNP C protein tetramer. J Struct Biol 114: 77-83, 1995.
69. Barnett S.F., Friedman D.L. and LeStourgeon W.M. The C proteins of HeLa 40S nuclear ribonucleoprotein particles exist as anisotropic tetramers of (C1)3 C2. Mol Cell Biol 9: 492-498, 1989.
70. Pinol-Roma S. andDreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355: 730-732, 1992.
71. Verheijen R., Kuijpers H., Vooijs P., van Venrooij W. and Ramaekers F. Protein composition of nuclear matrix preparations from HeLa cells: an immunochemical approach. J Cell Sci 80: 103-122, 1986.
72. van Eekelen C.A. andvan Venrooij W.J. hnRNA and its attachment to a nuclear protein matrix. J Cell Biol 88: 554-563, 1981.
73. Chang Z.F., Huang D.Y. and Chi L.M. Serine 13 is the site of mitotic phosphorylation of human thymidine kinase. J Biol Chem 273: 12095-12100, 1998.
74. Lai J.M., Hsieh C.L. and Chang Z.F. Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction. J Cell Sci 116: 3491-3501, 2003.
75. Shevchenko A., Jensen O.N., Podtelejnikov A.V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Boucherie H. and Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93: 14440-14445, 1996.
76. Perkins D.N., Pappin D.J., Creasy D.M. and Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567, 1999.
77. Adam S.A., Marr R.S. and Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111: 807-816, 1990.
78. Mayrand S.H., Dwen P. and Pederson T. Serine/threonine phosphorylation regulates binding of C hnRNP proteins to pre-mRNA. Proc Natl Acad Sci U S A 90: 7764-7768, 1993.
79. Lai J.M., Lu C.Y., Yang-Yen H.F. and Chang Z.F. Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochem J 359: 227-233, 2001.
80. Trotta C.R., Lund E., Kahan L., Johnson A.W. and Dahlberg J.E. Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. Embo J 22: 2841-2851, 2003.
81. Kudo N., Wolff B., Sekimoto T., Schreiner E.P., Yoneda Y., Yanagida M., Horinouchi S. and Yoshida M. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242: 540-547, 1998.
82. Izawa I., Amano M., Chihara K., Yamamoto T. and Kaibuchi K. Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 17: 2863-2871, 1998.
83. Sahai E., Alberts A.S. and Treisman R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. Embo J 17: 1350-1361, 1998.
84. Nakielny S. andDreyfuss G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J Cell Biol 134: 1365-1373, 1996.
85. Lischka P., Rosorius O., Trommer E. and Stamminger T. A novel transferable nuclear export signal mediates CRM1-independent nucleocytoplasmic shuttling of the human cytomegalovirus transactivator protein pUL69. Embo J 20: 7271-7283, 2001.
86. Tolstonog G.V., Sabasch M. and Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol 21: 213-239, 2002.
87. Sims J.R., Karp S. and Ingber D.E. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci 103 ( Pt 4): 1215-1222, 1992.
88. Maniotis A.J., Chen C.S. and Ingber D.E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94: 849-854, 1997.
89. Brockstedt E., Rickers A., Kostka S., Laubersheimer A., Dorken B., Wittmann-Liebold B., Bommert K. and Otto A. Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J Biol Chem 273: 28057-28064, 1998.
90. Yasui Y., Goto H., Matsui S., Manser E., Lim L., Nagata K. and Inagaki M. Protein kinases required for segregation of vimentin filaments in mitotic process. Oncogene 20: 2868-2876, 2001.
91. Krecic A.M. andSwanson M.S. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11: 363-371, 1999.
92. Huang M., Rech J.E., Northington S.J., Flicker P.F., Mayeda A., Krainer A.R. and LeStourgeon W.M. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 14: 518-533, 1994.
93. Choi Y.D., Grabowski P.J., Sharp P.A. and Dreyfuss G. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science 231: 1534-1539, 1986.
94. Wilusz J. andShenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol 10: 6397-6407, 1990.
95. Ford L.P., Wright W.E. and Shay J.W. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 21: 580-583, 2002.
96. Nakielny S. andDreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677-690, 1999.
97. Nakielny S. andDreyfuss G. Nuclear export of proteins and RNAs. Curr Opin Cell Biol 9: 420-429, 1997.
98. Williamson D.J., Banik-Maiti S., DeGregori J. and Ruley H.E. hnRNP C is required for postimplantation mouse development but Is dispensable for cell viability. Mol Cell Biol 20: 4094-4105, 2000.
99. Kim J.H., Paek K.Y., Choi K., Kim T.D., Hahm B., Kim K.T. and Jang S.K. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol Cell Biol 23: 708-720, 2003.
100. Holcik M., Gordon B.W. and Korneluk R.G. The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23: 280-288, 2003.
101. Orr A.W., Pallero M.A., Xiong W.C. and Murphy-Ullrich J.E. Thrombospondin induces RhoA inactivation through FAK-dependent signaling to stimulate focal adhesion disassembly. J Biol Chem 279: 48983-48992, 2004.
102. Fukata M., Nakagawa M., Kuroda S. and Kaibuchi K. Effects of Rho family GTPases on cell-cell adhesion. Methods Mol Biol 189: 121-128, 2002.
103. Fukata M. andKaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2: 887-897, 2001.
104. Palazzo A.F., Eng C.H., Schlaepfer D.D., Marcantonio E.E. and Gundersen G.G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303: 836-839, 2004.
105. Mayani H., Alvarado-Moreno J.A. and Flores-Guzman P. Biology of human hematopoietic stem and progenitor cells present in circulation. Arch Med Res 34: 476-488, 2003.
106. Roy V. andVerfaillie C.M. Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: implications for anatomical localization and developmental stage specific regulation of hematopoiesis. Exp Hematol 27: 302-312, 1999.
107. Moore K.A. andLemischka I.R. 'Tie-ing' down the hematopoietic niche. Cell 118: 139-140, 2004.
108. Sattler M., Mohi M.G., Pride Y.B., Quinnan L.R., Malouf N.A., Podar K., Gesbert F., Iwasaki H., Li S., Van Etten R.A., Gu H., Griffin J.D. and Neel B.G. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1: 479-492, 2002.
109. Feng G.S. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res 253: 47-54, 1999.
110. Neel B.G., Gu H. and Pao L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284-293, 2003.
111. Hof P., Pluskey S., Dhe-Paganon S., Eck M.J. and Shoelson S.E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 92: 441-450, 1998.
112. Schubbert S., Lieuw K., Rowe S.L., Lee C.M., Li X., Loh M.L., Clapp D.W. and Shannon K.M. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106: 311-317, 2005.
113. Araki T., Mohi M.G., Ismat F.A., Bronson R.T., Williams I.R., Kutok J.L., Yang W., Pao L.I., Gilliland D.G., Epstein J.A. and Neel B.G. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 10: 849-857, 2004.
114. Tartaglia M., Niemeyer C.M., Shannon K.M. and Loh M.L. SHP-2 and myeloid malignancies. Curr Opin Hematol 11: 44-50, 2004.
115. Bentires-Alj M., Paez J.G., David F.S., Keilhack H., Halmos B., Naoki K., Maris J.M., Richardson A., Bardelli A., Sugarbaker D.J., Richards W.G., Du J., Girard L., Minna J.D., Loh M.L., Fisher D.E., Velculescu V.E., Vogelstein B., Meyerson M., Sellers W.R. and Neel B.G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64: 8816-8820, 2004.
116. Mohi M.G., Williams I.R., Dearolf C.R., Chan G., Kutok J.L., Cohen S., Morgan K., Boulton C., Shigematsu H., Keilhack H., Akashi K., Gilliland D.G. and Neel B.G. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7: 179-191, 2005.
117. Saxton T.M., Henkemeyer M., Gasca S., Shen R., Rossi D.J., Shalaby F., Feng G.S. and Pawson T. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. Embo J 16: 2352-2364, 1997.
118. Saxton T.M. andPawson T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc Natl Acad Sci U S A 96: 3790-3795, 1999.
119. Qu C.K., Shi Z.Q., Shen R., Tsai F.Y., Orkin S.H. and Feng G.S. A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol Cell Biol 17: 5499-5507, 1997.
120. Qu C.K., Yu W.M., Azzarelli B., Cooper S., Broxmeyer H.E. and Feng G.S. Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol Cell Biol 18: 6075-6082, 1998.
121. Yu D.H., Qu C.K., Henegariu O., Lu X. and Feng G.S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 273: 21125-21131, 1998.
122. Manes S., Mira E., Gomez-Mouton C., Zhao Z.J., Lacalle R.A. and Martinez A.C. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol Cell Biol 19: 3125-3135, 1999.
123. Inagaki K., Noguchi T., Matozaki T., Horikawa T., Fukunaga K., Tsuda M., Ichihashi M. and Kasuga M. Roles for the protein tyrosine phosphatase SHP-2 in cytoskeletal organization, cell adhesion and cell migration revealed by overexpression of a dominant negative mutant. Oncogene 19: 75-84, 2000.
124. Motegi S., Okazawa H., Ohnishi H., Sato R., Kaneko Y., Kobayashi H., Tomizawa K., Ito T., Honma N., Buhring H.J., Ishikawa O. and Matozaki T. Role of the CD47-SHPS-1 system in regulation of cell migration. Embo J 22: 2634-2644, 2003.
125. Kontaridis M.I., Eminaga S., Fornaro M., Zito C.I., Sordella R., Settleman J. and Bennett A.M. SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol Cell Biol 24: 5340-5352, 2004.
126. Chang Y., Ceacareanu B., Dixit M., Sreejayan N. and Hassid A. Nitric oxide-induced motility in aortic smooth muscle cells: role of protein tyrosine phosphatase SHP-2 and GTP-binding protein Rho. Circ Res 91: 390-397, 2002.
127. Schoenwaelder S.M., Petch L.A., Williamson D., Shen R., Feng G.S. and Burridge K. The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Curr Biol 10: 1523-1526, 2000.
128. Beausoleil S.A., Jedrychowski M., Schwartz D., Elias J.E., Villen J., Li J., Cohn M.A., Cantley L.C. and Gygi S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101: 12130-12135, 2004.
129. Ren X.D., Kiosses W.B. and Schwartz M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. Embo J 18: 578-585, 1999.
130. Futaki S., Suzuki T., Ohashi W., Yagami T., Tanaka S., Ueda K. and Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276: 5836-5840, 2001.
131. del Pozo M.A., Alderson N.B., Kiosses W.B., Chiang H.H., Anderson R.G. and Schwartz M.A. Integrins regulate Rac targeting by internalization of membrane domains. Science 303: 839-842, 2004.
132. Harder T., Scheiffele P., Verkade P. and Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141: 929-942, 1998.
133. Kodama A., Matozaki T., Fukuhara A., Kikyo M., Ichihashi M. and Takai Y. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol Biol Cell 11: 2565-2575, 2000.
134. Bokoch G.M. Biology of the p21-activated kinases. Annu Rev Biochem 72: 743-781, 2003.
135. Wu T.R., Hong Y.K., Wang X.D., Ling M.Y., Dragoi A.M., Chung A.S., Campbell A.G., Han Z.Y., Feng G.S. and Chin Y.E. SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. J Biol Chem 277: 47572-47580, 2002.
136. Agazie Y.M. andHayman M.J. Development of an efficient 'substrate-trapping' mutant of Src homology phosphotyrosine phosphatase 2 and identification of the epidermal growth factor receptor, Gab1, and three other proteins as target substrates. J Biol Chem 278: 13952-13958, 2003.
137. Shi Z.Q., Yu D.H., Park M., Marshall M. and Feng G.S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 20: 1526-1536, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34693-
dc.description.abstract在本實驗室過去的研究中發現Rho-associated kinase (ROCK)在phorbol-12-myristate-13-acetate (PMA)誘發D2骨髓血球細胞凋亡的過程中扮演決定性的角色。為了瞭解在這個過程中有哪些分子受到ROCK的調控而改變,我利用蛋白質體學的研究方法,發現heterogeneous nuclear ribonucleoprotein C1 and C2 (hnRNP C1/C2)這兩個pre-mRNA結合蛋白質在PMA誘發的凋亡前期細胞中,從細胞核位移到細胞質;這個hnRNP C1/C2位移現象並不是因為該細胞的核膜破損所造成,也無關於caspase的作用;而是透過ROCK調控的細胞骨架改變所引發的核轉出。在TNF-alpha所誘發NIH3T3凋亡細胞中也可觀察到這個現象。我在HEK293T細胞中過度表現活化態的ROCK就足以造成hnRNP C1/C2的核轉出;同時也證實hnRNP C1/C2的C端40個氨機酸序列是一個可受到ROCK調控的核轉出訊號。此外,我發現ROCK所造成的細胞骨架改變也影響了細胞核中RNA的生合成速率。這些結果指出在PMA誘發的凋亡細胞中,透過ROCK活化所產生的訊息會傳遞到細胞核,造成hnRNP C1/C2的核轉出、核結構改變以及整體性的基因表現降低。
由於促進細胞附著(adhesion)可以阻斷PMA誘發的細胞凋亡,說明細胞剝離(de-adhesion)作用在PMA誘發的細胞凋亡扮演重要角色。我發現當懸浮的D2細胞附著於fibronectin (FN)基質上時,其RhoA的活性會明顯地降低。利用具有能通透細胞膜的活化態TAT-RhoAV14重組蛋白質處理已附著於FN基質的細胞,透過ROCK的作用,伴隨著MLC磷酸化增加及細胞膜表面lipid rafts的重新分佈,D2細胞從FN基質剝離而呈現懸浮狀態。有趣的是這個現象可以藉由抑制protein tyrosine phosphatase (PTP)的活性,或表現抑制型態的Shp-2(C/S)所干擾。利用ROCK kinase活性的測定,我證實表現抑制型態的Shp-2(C/S)會抑制ROCK的活性;進一步發現若將ROCK的Serine 1134及1137位置突變成alanine時,則失去其被Shp-2(C/S)調控的特性。由於Shp-2基因在血液細胞生成的過程中是必須的,從我的研究中推測Shp-2可能在該過程中藉由影響RhoA/ROCK所調控的細胞附著機制而扮演重要角色。
zh_TW
dc.description.abstractIn D2 cells, a myeloid leukemia cell line, Rho-associated kinase (ROCK) is required for phorbol-12-myristate-13- acetate (PMA)-induced apoptosis. Using a proteomic approach, I found that heterogeneous nuclear ribonucleoprotein C1 and C2 (hnRNP C1/C2), two nuclear restricted pre-mRNA binding proteins, are translocated to the cytoplasm in a ROCK-dependent manner in PMA-induced pro-apoptotic cells, where nuclear envelopes remain intact. The subcellular localization change of hnRNP C1/C2 appears to be dependent on ROCK-mediated cytoskeletal change and independent of caspase execution and new protein synthesis. This phenomenon is also observed in TNFalpha-induced apoptotic NIH3T3 cells. Over-expression of dominant active form of ROCK is sufficient to induce translocation of hnRNP C1/C2 in HEK293T cells. I also defined that C-terminal 40-amino-acid region of hnRNP C1/C2 is a novel nuclear export signal responsive to ROCK-activation. Besides, I found that ROCK-mediated cell contraction also induces down-regulation of general RNA synthesis. Here I conclude that a novel nuclear export is activated by the ROCK signaling pathway to exclude hnRNP C1/C2 from nucleus, by which the compartmentalization of specific hnRNP components is disturbed in apoptotic cells.
Since PMA-induced apoptosis could be inhibited by cell adhesion, here I also investigated regulation of ROCK signaling in cell adhesion. The results showed that the RhoA activity was down-regulated while D2 cells were adherent to fibronectin (FN) matrix. Treatment of cell-permeable dominant active form of TAT-RhoAV14 induces cell de-adhesion from FN matrix, accompanying by lipid rafts redistribution and myosin light chain (MLC) phosphorylation. Interestingly, inhibition of tyrosine phosphatase or co-expression of catalytically inactive tyrosine phosphatase Shp-2(C/S) abrogated the RhoAV14-induced cell de-adhesion. By in vitro kinase analysis, I demonstrated that ROCK kinase activity was repressed in the cells co-expressing dominant negative Shp-2(C/S). Interestingly, mutation on S1134A/S1137A of ROCK abrogated its Shp-2(C/S)-responsive down-regulation. Given that the gene targeted mice experiment has shown that Shp-2 gene is essential for hematopoiesis. The results of my study suggest that Shp-2 may play a pivotal role in the myelopoiesis through regulating RhoA/ROCK-mediated cell de-adhesion.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:23:01Z (GMT). No. of bitstreams: 1
ntu-95-D89442006-1.pdf: 3607870 bytes, checksum: 334fcc7a89ef5b95ad8754a0b0b86887 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 ………………………………………………………… I
Abstract ………………………………………………………… II
Content …………………………………………………………… III
Preface …………………………………………………………… 1
Chapter I. Overview of Rho-associated kinase
Introduction …………………………………………………… 2
I-1. Structure of Rho-associated kinase ………………… 3
I-2. The functions of ROCK in cells: substrates for phosphorylation ………………………………………………… 5
I-3. The regulation of Rho-associated kinase. ………… 9
Chapter II. Nuclear efflux of heterogeneous nuclear ribonucleoprotein C1/C2 in apoptotic cells: a novel nuclear export dependent on Rho-associated kinase activation
Introduction……………………………………………………… 14
Materials and Methods ………………………………………… 17
Results …………………………………………………………… 22
Discussion………………………………………………………… 30
Figures and Legends…………………………………………… 34
Chapter II. Regulation of RhoA/ROCK-mediated cell detachment: the involvement of Shp-2
Introduction……………………………………………………… 48
Materials and Methods ………………………………………… 50
Results …………………………………………………………… 53
Discussion………………………………………………………… 57
Figures and Legends…………………………………………… 60
References ……………………………………………………… 71
Appendix
Table 1. The Substrates of Shp-2 ………………………… 81
Table 2. The Substrates of Shp-1 ………………………… 82
Table 3. The interacting proteins of Shp-2 …………… 83
Table 4. The interacting proteins of Shp-1 …………… 85
dc.language.isoen
dc.subjectphorbol esterzh_TW
dc.subjectRho-associated kinasezh_TW
dc.subject細胞凋亡zh_TW
dc.subjectphorbol esteren
dc.subjectRho-associated kinaseen
dc.subjectapoptosisen
dc.titleRho-associated kinase在phorbol ester誘發細胞凋亡之角色探討zh_TW
dc.titleRho-associated kinase in phorbol ester-induced apoptosisen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee周祖述(Tzuu-Shuh Jou),陳鴻震(Hong-Chen Chen),陳玉如(Yu-Ju Chen),孟子青(Tzu-Ching Meng)
dc.subject.keywordRho-associated kinase,phorbol ester,細胞凋亡,zh_TW
dc.subject.keywordRho-associated kinase,phorbol ester,apoptosis,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2006-01-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved