Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34612
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許武榮
dc.contributor.authorMing-En Hsiehen
dc.contributor.author謝銘恩zh_TW
dc.date.accessioned2021-06-13T06:18:15Z-
dc.date.available2006-02-08
dc.date.copyright2006-02-08
dc.date.issued2006
dc.date.submitted2006-01-26
dc.identifier.citation張書銘,2005:地形對颮線發展影響之數值模擬研究。碩士論文,國立台灣大學大氣科學研究所。
張博雄與曾忠一,1998:半拉格朗日法單調平流格式的數值實驗。大氣科學,26,325-342。
曾忠一,1993:大氣模式的數值方法。渤海堂,台北市,695頁。
林李耀,1997:颮線的數值模擬研究。博士論文,國立台灣大學大氣科學研究所。
黃維平,2002:二維非靜力模式對颮線之數值模擬。碩士論文,國立台灣大學大氣科學研究所。
Akima, H., 1991: A method of univariate interpolation that has the accuracy of a third-degree polynomial. ACM Trans. Math. Softw., 17, 341-366.
Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 18–36.
Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renorma-lization of the advective fluxes. Mon. Wea. Rev., 117, 1006-1015.
Bermejo, R., 1990: On the equivalence of semi-Lagrangian schemes and particle-in-cell finite element methods. Mon. Wea. Rev.: 118, 979–987.
———, and A. Staniforth, 1992: The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon. Wea. Rev., 120, 2622-2632.
Caya, A., R. Laprise, and P. Zwack, 1998: Consequences of using the splitting method for implementing physical forcings in a semi-implicit semi-Lagrangian model. Mon. Wea. Rev., 126, 1707-1713.
Chen, C., W.-K. Tao, P-L. Lin, G. S. Lai, S.-F. Tseng, and T.-C. Chen, 1998: The intensification of the low-level jet during the development of mesoscale convective systems on a Mei-Yu front. Mon. Wea. Rev., 126, 349-371.
Chen, C.-S., 1991: A numerical study of a squall line over the Taiwan Strait during TAMEX IOP 2. Mon. Wea. Rev., 119, 2677-2698.
Cheng, H. ,S.-L. Fang, and J. E. Lavery, 2002: Univariate cubic L1 splines- A geometric programming approach. Math. Meth. Oper. Res., 56, 197-229.
Chern, J. D., 1994: Numerical simulations of cyclogenesis over the western United States. PhD thesis. Department of Earth and Atmospheric Sciences, Purdue University, 178 pp.
Crowley, W. P., 1968: Numerical advection experiments. Mon. Wea. Rev., 96, 1–11.
Deardoff, J. W., 1980: Stratocumulus-capped mixed layer derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495-527.
Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.
Dudhia, J., M. W. Moncrieff, and D. W. K. So, 1987: The two-dimensional dynamics of West African squall lines. Quart. J. Roy. Meteor. Soc., 113, 121-146.
———, 1993: A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 128, 901–914.
Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 2341–2361.
Falcone, M., and R. Ferretti, 1998: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal., 35, 909-940.
Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846-3879.
———, and ———, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 3144-3176.
Fritsch, F. N., and R. E. Carlson, 1980: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17, 238-246.
Gadd, A. J., 1978a: A numerical advection scheme with small phase speed errors. Quart. J. Roy. Meteor. Soc., 104, 583-594.
———, 1978b: A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 104, 569-582.
Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.
Gospodinov, I., V. Spiridonov, P. Benard, and J.-F. Geleyn, 2002: A refined semi-Lagrangian vertical trajectory scheme applied to a hydrostatic atmospheric model. Quart. J. Roy. Meteor. Soc., 128, 323-336.
Herriot, J. G., 1983: Algorithm 600. Translation of algorithm 507: Procedures for quintic natural spline interpolation. ACM Trans. Math. Softw., 2, 258-259.
Heymsfield, G. M., 1999: A wintertime Gulf squall line observed by EDOP airborne Doppler radar. Mon. Wea. Rev., 127, 2928-2949.
Holnicki, P., 1995: A shape-preserving interpolation: applications to semi-Lagrangian advection. Mon. Wea. Rev., 123, 862-870.
Hortal, M., 2002: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Quart. J. Roy. Meteor. Soc., 128, 1671-1687.
Hsie, E. Y., R. D. Farley, and H. D. Orville, 1980: Numerical simulation of ice phase convective cloud seeding. J. Appl. Meteor., 19, 950–977.
Hsu, W. R., and W. Y. Sun, 1994: A numerical study of a low-level jet and its accompanying secondary circulation in a Mei-Yu system. Mon. Wea. Rev. 122, 324–340.
———, and ———, 2001: A time-split, forward-backward numerical model for solving a system of nonhydrostatic and compressible equations. Tellus, 53A, 279-299.
Huang, C. Y., 1994: Semi-Lagrangian advection schemes and Eulerian WKL algorithms. Mon. Wea. Rev. 122, 1647–1658.
———, 1997: A comparative study of high-order, quasi-conservative, semi-Lagrangian, and Eulerian advection schemes. J. Appl. Meteor., 36, 599-613.
Huynh, H. T., 1993: Accurate monotonic cubic interpolation. SIAM J. Numer. Anal., 30, 57-100.
Ikawa, M., 1988: Comparison of some schemes for nonhydrostatic models with orography. J. Meteor. Soc. Japan., 66, 753-776.
Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 1961-1985.
Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The national center for atmospheric research community climate model: CCM3. J. Climate, 11, 1131-1149.
Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070-1096.
Koch, S. E., A. Aksakal, and J. T. McQueen, 1997: The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold-frontal squall line. Mon. Wea. Rev., 125, 384-409.
Kuo, H.-C., and R. T. Williams, 1990: Semi-Lagrangian solutions to the inviscid Burgers equation. Mon. Wea. Rev., 118, 1278-1288.
Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan area mesoscale experiments: An overview. Bull. Amer. Meteor. Soc., 71, 488-503.
Lafore, J. P., and Coauthors, 1998: The meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90-109.
Laprise, J. P. R., and A. Plante, 1995: A class of semi-Lagrangian integrated-mass(SLIM) numerical transport algorithms. Mon. Wea. Rev., 123, 553-565.
Lavery, J. E.,2000: Univariate cubic Lp splines and shape-preserving, multiscale interpolation by univariate cubic L1 splines. Comput. Aided Geometric Design, 17, 319-336.
Leonard, B. P., 2002: Stability of explicit advection schemes. The balance point location rule. Int. J. Numer. Meth. Fluids, 38, 471-514.
Leslie, L. M., and R. J. Purser, 1995: Three-dimensional mass-conserving semi-Lagrangian scheme employing forward trajectories. Mon. Wea. Rev., 123, 2551-2566.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 985–1004.
McDonald, A. 1984: Accuracy of multiply-upstream, semi-Lagrangian advective schemes. Mon. Wea. Rev., 112, 1267–1275.
Montmerle, T., 2000: A tropical squall line observed during TOGA COARE: Extended comparisons between simulations and Doppler radar and the role of midlevel wind shear. Mon. Wea. Rev., 128, 3709-3730.
Nagata, M., and Y. Ogura, 1991: A modeling case study of interaction between heavy precipitation and a low-level jet over Japan in the Baiu season. Mon. Wea. Rev., 119, 1309–1336.
Nair, R., J. Côté, and A. Staniforth, 1999: Monotonic cascade interpolation for semi- Lagrangian advection. Quart. J. Roy. Meteor. Soc., 125, 197-212.
Pellerin, P., R. Laprise, and I. Zawadzki, 1995: The performance of a semi-Lagrangian transport scheme for the advection–condensation problem. Mon. Wea. Rev., 123, 3318-3330.
Peng, X., F. Xiao, T. Yabe, and K. Tani, 2003: Implementation of the CIP as the advection solver in the MM5. Mon. Wea. Rev., 131, 1256-1271.
Priestley, A., 1993: A quasi-conservative version of the semi-Lagrangian advection scheme. Mon. Wea. Rev., 121, 621-629.
Purnell, D. K., 1976: Solution of the advective equation by upstream interpolation with a cubic spline. Mon. Wea. Rev., 104, 42-48.
Purser, R. J., and L. M. Leslie, 1991: An efficient interpolation procedure for high-order three-dimensional semi-Lagrangian models. Mon. Wea. Rev., 119, 2492-2498.
———, T. Fujita, S. K. Sar, and J. G. Michalakes, 2001: A semi-Lagrangian dynamical core for the non-hydrostatic WRF model. Ninth Conference on Mesoscale Processes.
Queney, P., 1948: The problem of airflow over mountains: A summary of theoretical results. Bull. Amer. Meteor. Soc., 29, 19–26.
Rančić, M., and G. Sindjić, 1989: Noninterpolating semi-Lagrangian advection scheme with minimized dissipation and dispersion errors. Mon. Wea. Rev., 117, 1906-1911.
———, 1995: An efficient, conservative, monotone remapping for semi-Lagrangian transport algorithms. Mon. Wea. Rev., 123, 1213-1217.
Robert, A. J., 1969: The integration of a spectral model of the atmosphere by the implicit method. Proc. of WMO/IUGG Symp. on NWP Tokyo, Japan Meteorological Agency, VII.19-VII.24.
———, 1981: A stable numerical integration scheme for the primitive meteorological equations. Atmos. Ocean., 19, 35-46.
———, 1982: A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equation. Jpn. Meteor. Soc., 60, 319-325.
———, 1993: Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci., 50, 1865–1873.
———, J. Henderson, and C. Turnbull, 1972: An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Rev., 100, 329-335.
Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.
———, and ———, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation and development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.
Sawyer, J. S., 1963: A semi-Lagrangian method of solving the vorticity advection equation. Tellus, 15, 336-342.
Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563-2584.
Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348–364.
Smolarkiewicz, P. K., 1982: The multi-dimensional Crowley advection scheme. Mon. Wea. Rev., 110, 1968–1983.
———, 1983:A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev., 111, 479-486.
Staniforth, A., J. Côté, and J. Pudykiewicz, 1987: Comments on “Smolarkiewicz's deformational flow”. Mon. Wea. Rev., 115, 894–900.
———, and ———, 1991: Semi-Lagrangian integration schemes for atmospheric models--a review. Mon. Wea. Rev., 119, 2206-2223.
Steppeler, J. 1995, Comments on 'A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: Validation tests and simulations of an Atlantic cyclone and cold front.' Mon. Wea. Rev., 123, 2572.
Sun, W. Y., 1980: A forward-backward time integration scheme to treat internal gravity waves. Mon. Wea. Rev., 108, 402-407.
———, 1984: Numerical analysis for hydrostatic and nonhydrostatic equations of inertial-internal gravity waves. Mon. Wea. Rev., 112, 259–268.
———, J. D. Chern, C. C. Wu, and W. R. Hsu, 1991: Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev., 119, 2558–2573.
———, 1993: Numerical experiments for advection equation. J. Comput. Phys., 108, 264-271.
———, K.-S. Yeh, and R.-Y. Sun, 1996: A simple semi-Lagrangian scheme for advection equations. Quart. J. Roy. Meteor. Soc., 122, 1211-1226.
———, and K.-S. Yeh, 1997: A general semi-Lagrangian advection scheme employing forward trajectories. Quart. J. Roy. Meteor. Soc., 123, 2463-2476.
Takacs, L. L., 1985: A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Mon. Wea. Rev., 113, 1050–1065.
Trier, S. B., W. C. Skamarock, and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci., 54, 386-407.
———, ———, ———, and D. B. Parsons, 1996: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci., 53, 2861-2886.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective systems on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.
———, and ———, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498.
———, 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826-1847.
———, W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled covective systems. Mon. Wea. Rev., 125, 527-548.
Wiin-Nielsen, A., 1959: On the application of trajectory methods in numerical forecasting. Tellus, 11, 180-196.
Williamson, D., and P. Rasch, 1994: Water vapor transport in the NCAR CCM2. Tellus, 46A, 34-51.
Xue, M., 2000: High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev., 128, 2853-2864.
Yabe, T., R. Tanaka, T. Nakamura, and F. Xiao, 2001: An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension. Mon. Wea. Rev., 129, 332–344.
Yang, M.-J., and R. A. Houze Jr., 1995a: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641-661.
———, and ———, 1995b: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175-3193.
Yeh, K.-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC-MRB global environment multiscale (GEM) model. Part III: nonhydrostatic formulation. Mon. Wea. Rev., 130, 339-356.
Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335–362.
Zhang, Z., and C. F. Martin, 1997: Convergence and Gibb’s phenomenon in cubic spline interpolation of discontinuous functions. J. Comput. Appl. Math., 87, 359-371.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34612-
dc.description.abstract本文發展一適用於交錯網格模式的單調半拉格朗日法,進行理想個案測試驗證其精確度,並用於台大-普度三維非靜力模式進行三維非靜力線性山岳波、熱胞對流以及二維與三維颮線模擬實驗。在一至三維的理想個案測試中,單調半拉格朗日法均顯示其高精確度。在山岳波與熱胞的測試中,使用單調半拉格朗日法的模擬結果,相較於原本使用的有限差分法,其結果較為無雜訊而且形狀維持較好。加上單調的勻滑格式將使模式更為穩定無雜訊。
使用單調半拉格朗日法的二維颮線模擬,整體來說較有限差分平流法的結果為佳,同時兩者均能掌握典型的颮線二維結構。三維颮線模擬使用1 km與2 km兩種解析度進行模擬,除了平均場能夠顯示出二維結構,在初始擾動具y方向不均勻性的情況下,個別對流胞的流場非常複雜且會彼此交互作用。即使環境有利於前移胞發展,後移胞仍可能存在並發展,後移胞對於前移胞的效應為減少後方內流。另外三維颮線的平均最大上升速度較二維颮線為低,但個別對流胞的上升速度則較二維為強。而改變解析度最主要的影響為,除了冷池之外的物理量變化振幅均下降。同時低解析度模擬的颮線結構較不明顯,主對流區與冷池的移行速率也較慢。此外,低解析度不利較小尺度的現象發展,因此在低解析度模擬中y方向的對流胞數目較少,水平範圍較廣。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T06:18:15Z (GMT). No. of bitstreams: 1
ntu-95-D90229002-1.pdf: 23076586 bytes, checksum: 5d07c54ddc3db66f7dfa229d8b74000b (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要…...……………………………………………………………...….i
誌謝………………………...…………………………………..ii
目錄……………………………………………………...…….iii
表說明………………………………………………………....vi
圖說明……………………………..……………………….....vii
第一章 前言………………………..………………...…...………….1
1.1 研究背景…………………………………………...…………1
1.2 研究動機與目的…………………………………………...…6
第二章 半拉格朗日法的文獻回顧……………………………...8
2.1 半拉格朗日法原理…………………………………………...8
2.2 應用於模式的一般考慮……………………………………...9
2.3 軌跡計算與內插策略………………...……………………....9
2.4 內插精確度………………………………………………….14
2.5 平流方程與其他過程的合成……………………………….14
第三章 單調內插格式…………………………………….……...22
3.1 被平流量特性的維持………………………………………...22
3.2 新的單調內插格式………………………………………...…25
3.3 單調格式的理想數值實驗………………………………...…26
3.3.1一維正弦波,均勻風場………………………………….27
3.3.2一維方形波,均勻風場………………………………….27
3.3.3二維方形波,旋轉風場………………………………….28
3.3.4三維方形波,旋轉風場………………………………….29
3.3.5二維圓錐,變形場……………………………………….29
3.4 單調勻滑格式……………………………………………..….31
第四章 使用單調半拉格朗日法於台大-普度模式的驗證 .51
4.1 台大-普度非靜力模式簡介………………………………..…51
4.2 三維非靜力線性山岳波實驗……………………….……..…51
4.2.1 實驗設定…………………………………………………52
4.2.2 討論………………………………………………………52
4.3 熱胞對流實驗………………………………………...………54
4.3.1 實驗設定…………………………………………………54
4.3.2 控制個案討論……………………………………………54
4.3.3 使用不同平流方法的比較………………………………55
4.3.4 與高解析度模擬的比較…………………………………56
4.3.5 使用不同勻滑格式的比較………………………………57
第五章 颮線個案模擬……………………………………....……76
5.1 二維颮線模擬…………………………………………...……76
5.1.1模式設定與初始條件……………………………....….…76
5.1.2 半拉格朗日法模擬結果…………………...……....….…78
5.1.3 不同平流方法模擬比較……………………...…....….…79
5.2 三維颮線模擬………...…..…………………………….….…81
5.2.1 模式設定與初始條件…....…………………………..…81
5.2.2 水平格距1 km的模擬結果…....……………………..…82
5.2.3 不同水平格距模擬結果的比較…....……………………84
第六章 結論……………………………………...……………..…124
附錄……………………………………...………………………....…127
A 台大-普度非靜力模式介紹...……………………….……..…127
A.1 模式座標系統...…………………………………….....…127
A.2 模式方程組...……………………………………….....…128
A.3 準可壓縮條件...…………………………………….....…130
A.4 有限差分法...………………………..………………...…130
A.4.1 平流階段...………………………………..……....…131
A.4.2 高頻波動階段…………………………..…...…....…131
A.4.3 擴散階段…………………………..……………...…131
A.5 雲物理過程………………………………..…..……....…133
A.6 平行化運算………………………………..…..……....…133
A.7 邊界條件………………………………..…..………....…134
B 三維非靜力線性山岳波解析解……………………………...137
參考文獻………………………………..…..………………..…...…139
dc.language.isozh-TW
dc.subject半拉格朗日法zh_TW
dc.subject單調格式zh_TW
dc.subject數值模擬zh_TW
dc.subject颮線zh_TW
dc.subjectmonotonic schemeen
dc.subjectsemi-Lagrangian methoden
dc.subjectnumerical simulationen
dc.subjectsquall lineen
dc.title單調半拉格朗日平流格式在三維非靜力模式及在颮線模擬上的應用zh_TW
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee吳清吉,郭鴻基,柯文雄,黃清勇,楊明仁,林沛練
dc.subject.keyword半拉格朗日法,單調格式,數值模擬,颮線,zh_TW
dc.subject.keywordsemi-Lagrangian method,monotonic scheme,numerical simulation,squall line,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2006-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
22.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved