請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34592完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃克寧,陳啟仁 | |
| dc.contributor.author | Jian-Min Li | en |
| dc.contributor.author | 李建敏 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:17:05Z | - |
| dc.date.available | 2006-02-07 | |
| dc.date.copyright | 2006-02-07 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-01-27 | |
| dc.identifier.citation | [1] Buchholt H. A., 1985, “An introduction to cable roof structures,” Cambridge University Press, Cambridge
[2] Charlton, 1973, “Energy principles in theory of structures,” Oxford University Press, London. [3] Christian Müller, 2000, “Laminated Timber Construction,” Birkhäuser, Basel, Switzerland. [4] Graefe R.,1986, “On the form development arches and vaults (in German),” Journal of History of Architecture. Deutscher Kunstverlag, Munchen-Berlin, pp. 50-67 [5] Barnes M. R. (1974), Dynamic Relaxation Analysis of Tension Networks, Proceedings of the Int. Conf. on Tension Structures, London [6] Deutscher Kunstverlag: Munchen-Berlin, 1986; 50–67. Mainstone RJ. Developments in Structural Form. MIT-Press: Cambridge, MA, 1975. [7] E. Happold and W. I. Liddell, 1975, “Timber Lattice roof for the Mannheim Bundesgartenschau,” The Structural Engineer, Vol. 53, pp. 99-135 [8] E. Ramm and W. A. Wall, 2004, “Shell structures-a sensitive interrelation physics and numerics,” International Journal for Numerical Methods in Engineering,” Vol. 60, pp. 381-427 [9] Frei Otto, 1973, “Tensile Structures,” The MIT Press, Cambridge, Massachusetts, and London, England [10] Graefe R. On the form development of arches and vaults (in German). Journal History of Architecture. [11] Heinz Isler, 1991, “General shell shapes by physical experiments,” Bulletin of the International Association for Shell and Spatial Structures, v 34, n 111, Apr, 1993, p 53-63 [12] Helzog, Natterer, Schweitzer, Volz and Winter, 2004, “Timber Construction Manual,” Birkhäuser, Basel, Switzerland [13] IL, 1974, “IL10 Grid Shells,” Information of the Institute for Leightweight Struvtures, University of Stuttgart [14] Jörg Schlaich and Hans Schober, 1999, “Recent glass roof,” IASS, Vol. 40, n. 131, pp. 193-205 [15] Jörg Schlaich and Rudolf Bergermann, 2003, “Light structures,” Prestel, Munich. [16] Klaus Linkwitz, 1996, “Design, Formfinding and Premanufacturing; Demonstrated at Three Selected Structures,” International Wood Engineering Conference 96, n. 1, pp. 3-17 [17] Kwan A.S.K., 1998, “A new approach to geometric nonlinearity of cable structures,” Computer and Structures, Vol. 67, n.4, pp. 243-252 [18] Lewis W. J., 1989, “The efficiency of numerical methods for the analysis of prestressed nets and pin-jointed frame structures,” Computer and Structures, Vol. 33, No. 3, pp.791-800 [19] Mainstone RJ., 1975, “Developments in Structural Form,” MIT-Press, Cambridge [20] Peter Broughton and Paul Ndumbaro, 1994, “The analysis of cable and catenary structures,” Thomas Telford Services, London [21] R. Levy and W. R. Spillers, 1998, “Practical methods of shape-finding for membranes and cable nets,” Journal of Structural Engineering, Vol. 124, n. 4, pp. 466-468 [22] Sang-Eul Han and Kyoung-Su Lee, 2003, “A study of the stabilizing process of unstable structures by dynamic relaxation method,” Computer and Structures, Vol. 81, pp. 1677-1688 [23] Th. Bulenda and J. Knippers, 2001, “Stability of grid shell,” Computers & Structures, Vol. 79, pp. 1161-1174 [24] Vinzenz Sedlak, 1991, “Timber shell structures and their shapes-recent developments and design approach,” 1991 International Timber Engineering Conference London, n. 2, pp. 34-45 [25] William McGuire, Richard H. Gallagher and Ronald D. Ziemian, “Matrix structural analysis-2nd ed.,” Wiley, New York [26] 聯邦工程顧問有限公司、李森柟,2003,SAP2000入門與工程上之應用,科技圖書,台灣臺北 [27] 彭國倫,2001,Fortran 95 程式設計,碁峰,台灣臺北 [28] 楊慶山、姜億南,2004,張拉索¬-膜結構分析與設計,科學出版社,中國北京。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34592 | - |
| dc.description.abstract | 鏈結構對於薄殼結構的找型具有相當高的應用價值;透過控制邊界條件及桿件的安排可以產生出許多不同幾何外觀的薄殼形式。由於應用此方法所得之薄殼的彎曲力矩極低,因此可大幅提升材料效率。
不穩定鏈結構最終之穩定態一定必須透過對節點位移多次之迭代計算才能得到。本研究之每次迭代中某節點位移的計算方法是將連結於該節點所有桿件之另一端視為固定端來計算,而該位移量還必須折半才能使迭代計算收斂。 利用上述計算方法具有桿件剛性與迭代數約成正比的特性,本研究發展出以桿件剛性低之系統模擬桿件剛性高之系統的方法。該法可以大幅節省原方法所需之迭代數。由於桁架結構與索結構也同為鏈結構之一種,所以本計算方法也同時適用於上述兩種結構。經驗證,在小位移與大位移的運算範疇,本法與商用結構分析軟體SAP 2000所得之計算結果皆一致。 一般鏈結構之初始狀態各桿件之長度需要符合桿件原長,但是符合此條件之初始狀態並不容易求得。本方法可在桿件初始長度與桿件原長並不相符的條件下展開迭代計算,因此可將初始狀態之各節點置於同一平面。這特性對於特定幾何形狀之基地的薄殼找型具有一定的利用價值。 | zh_TW |
| dc.description.abstract | Link structures could be highly useful to the form finding of shell structures. With boundary conditions controlling and elements management, link structures could generate many types of shells with different geometric appearances. Such shells also have great advantage in material efficiency because of extremely low bending moments of witch.
The final stable state of the unstable link structures must be found by the iteration of the joints’ positions. In this research, the displacement of the particular joint in one iteration will be calculated under the specification that the other ends of the elements connected to the joint are taken as fixed points. And the displacements acquired above need also to be reduced by half to make sure the iteration convergent. Since the element’s stiffness of the system is directly proportional to the iteration number, we can develop a time saving method by adopting the system with low-stiffness elements to simulate the system with high-stiffness elements. The method developed here can be used to calculate truss structures and cable structures, because these two structures are also in the category of the link structures. We will show how this method and that of SAP2000, the commercial software of structural analysis, have the results in common for both small displacements cases and large displacement cases. Generally, every element’s length of one link structure’s initial state must be equal to their original length. However, it is not easy to determine the joints’ positions of such kind of initial state. Our iteration method could be run under such condition as every element’s length of the initial state is not equal to their original length. Thus, we could make an initial state with all the joints’ positions in one plane. And this property will be very useful to the shells’ form finding of the site with particular geometric shape. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:17:05Z (GMT). No. of bitstreams: 1 ntu-95-R92222058-1.pdf: 2035806 bytes, checksum: a67912817ab1abe54c7b4864acd668b3 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 第一章 論………………………………………………………… 1
1.1研究背景與動機……………………………………………… 1 1.1.1何謂穩定鏈結構…………………………………………… 1 1.1.2穩定鏈結構有何重要性…………………………………… 2 1.1.3求得穩定鏈結構的挑戰…………………………………… 4 1.2研究目的……………………………………………………… 5 1.3研究過程與內容……………………………………………… 5 第二章 文獻回顧與理論介紹…………………………………… 6 2.1鏈結構之力學研究發展……………………………………… 6 2.2實驗方法……………………………………………………… 7 2.3計算方法 …………………………………………………… 8 2.3.1 動態鬆弛法 ……………………………………………… 8 2.3.2 剛體運動法……………………………………………… 10 2.3.3 能量梯度法……………………………………………… 11 2.3.3.1最深斜坡法 …………………………………………… 13 2.3.3.2 牛頓-勞森法 ………………………………………… 14 2.3.3.3 共軛梯度法…………………………………………… 16 2.3.4 非線性有限元素法……………………………………… 17 第三章 程式開發 ……………………………………………… 18 3.1原始構想 …………………………………………………… 18 3.1.1 一根軸力桿件…………………………………………… 19 3.1.2節點位移計算方法一 …………………………………… 19 3.1.3 桿件兩端皆為自由端之修正…………………………… 21 3.1.4 初始擾動………………………………………………… 22 3.1.5 原始程式………………………………………………… 23 3.2原始程式試驗 ……………………………………………… 26 3.2.1如何選擇試驗主體 ……………………………………… 26 3.2.2 計算結果之分析………………………………………… 27 3.2.3 其它影響迭代數之因素………………………………… 31 3.2.3.1 桿件剛性對迭代數之影響…………………………… 31 3.2.3.2 系統自由度對迭代數之影響………………………… 32 3.2.3.3 桿件長度對迭代數之影響…………………………… 33 3.2.3.4 CP值對收歛之影響 ………………………………… 34 3.2.3.5 小結…………………………………………………… 35 3.3程式之修正 ………………………………………………… 36 3.3.1合力與桿件之夾角對位移量的影響 …………………… 36 3.3.2如何修正節點位移 ……………………………………… 37 3.3.2.1 節點位移計算方法二………………………………… 37 3.3.2.2 節點位移計算方法三………………………………… 38 3.3.3 不同位移修正量方法的比較…………………………… 40 3.3.4再論三個方法背後之計算原理 ………………………… 44 第四章 用桿件剛性低的系統模擬桿件剛性高的系統 ……… 42 4.1幾何與收斂速率上的難題 ………………………………… 45 4.1.1幾何上的難題--壓力與張力的不同 …………………… 45 4.1.2 收斂速率上的難題……………………………………… 46 4.2 節點位置與桿件內力的關係……………………………… 46 4.2.1 節點位置決定桿件內力分布…………………………… 46 4.2.2如何使兩個系統之穩定態的幾何形狀一致 …………… 47 4.2.3 若二系統節點位置近似則桿件內力近似……………… 48 4.3 迭代桿件原始長度的機制 – 虛擬桿件法……………… 48 4.3.1修正虛擬系統之桿件原始長度 ………………………… 49 4.3.2剛體 ……………………………………………………… 50 4.3.3彈性體 …………………………………………………… 50 4.3.4反彈性體 ………………………………………………… 51 4.4 將原始長度迭代機制引入程式…………………………… 51 4.4.1程式邏輯之修改 ………………………………………… 52 4.4.2結果初探 ………………………………………………… 54 4.4.2.1 收斂過程……………………………………………… 54 4.4.2.2 迭代精度限制對計算收斂的影響…………………… 56 4.4.2.3 桿件剛性對收斂速度之影響………………………… 58 4.4.2.4 如何決定虛擬桿件之剛性…………………………… 59 4.5 程式效能…………………………………………………… 59 4.5.1計算偏差 ………………………………………………… 59 4.5.2效率的提升 ……………………………………………… 61 4.6 與其他學者研究結果之比較……………………………… 62 4.6.1平衡過程的比較 ………………………………………… 62 4.6.2數據之比較 ……………………………………………… 65 第五章 程式應用的推廣…………………………………………66 5.1幾何線性與幾何非線性桁架分析……………………………66 5.1.1小位移之幾何線性桁架分析 …………………………… 66 5.1.2大位移之幾何非線性桁架分析 ………………………… 69 5.1.3 討論 ………………………………………………………71 5.2繩索結構………………………………………………………72 5.2.1驗証一 …………………………………………………… 72 5.2.2驗証二 …………………………………………………… 74 第六章 結論與展望 …………………………………………… 76 6.1 結論………………………………………………………… 76 6.2 展望………………………………………………………… 76 參考文獻………………………………………………………… 77 附錄-薄殼找形之初步應用 …………………………………… 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薄殼 | zh_TW |
| dc.subject | 找型 | zh_TW |
| dc.subject | 迭代 | zh_TW |
| dc.subject | 鏈結構 | zh_TW |
| dc.subject | 不穩定態 | zh_TW |
| dc.subject | 零彎矩結構 | zh_TW |
| dc.subject | 穩定態 | zh_TW |
| dc.subject | shells | en |
| dc.subject | grid shells | en |
| dc.subject | bending free structures | en |
| dc.subject | unstable state | en |
| dc.subject | stable state | en |
| dc.subject | iteration | en |
| dc.subject | link structure | en |
| dc.subject | form finding | en |
| dc.title | 一種計算鏈結構的新方法 | zh_TW |
| dc.title | A new numerical approach for establishing stable link structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂良正 | |
| dc.subject.keyword | 鏈結構,薄殼,找型,迭代,穩定態,不穩定態,零彎矩結構, | zh_TW |
| dc.subject.keyword | link structure,shells,form finding,iteration,stable state,unstable state,bending free structures,grid shells, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-01-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
