請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34554
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳瑤明 | |
dc.contributor.author | Fang-Shen Yeh | en |
dc.contributor.author | 葉芳伸 | zh_TW |
dc.date.accessioned | 2021-06-13T06:14:52Z | - |
dc.date.available | 2011-02-09 | |
dc.date.copyright | 2006-02-09 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-02-06 | |
dc.identifier.citation | 參考文獻
1. Ahuja, A. S., “Augmentation of Heat Transfer in Laminar Flow of Polystyrene Suspensions,” J. Appl. Phys., Vol.46, pp.3408-3425, 1975. 2. Azar, K., “Advanced Cooling Concepts and Their Challenges,” Therminic-2002, 2002. 3. Wang, B. X., Zhou, L. P., and Peng, X. F., “A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles,” Int. J. Heat Mass Transfer, Vol.46, pp.2665-2672, 2003. 4. Das, S. K., Putra, N., and Roetzel, W., “Pool Boiling Characteristics of Nano–Fluids,” Int. J. Heat and Mass Transfer, Vol.46, pp.851-862, 2003A. 5. Das, S. K., Putra, N., Thiesen, P., and Roetzel, W., “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” J. Heat Transfer, Trans. ASME, Vol.125, pp.567-574, 2003B. 6. Ding, Y., and Wen, D., “Particle Migration in a Flow of Nanoparticle Suspensions,” Powder Technology, Vol.149, pp.84-92, 2005. 7. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J., “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Applied Physics Letters, Vol.78, pp.718-720, 2001. 8. Estes, K. A. and Mudawar, I., “Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays,” J. Electronic Packaging, Transactions of the ASME, Vol.117, No.4, pp.323-332, 1995. 9. Hamilton, R. L. and Crosser, O. K., “Industrial & Engineering Chemistry Fundamentals,” Vol.1, No.3, pp.187-191, 1962. 10. Haramura, Y., and Katto, Y., “A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids,” Int. J. Heat Mass Transfer, Vol.26, pp.389-399, 1983. 11. Katsuta, M., and Kurose, T., “A Study on Boiling Heat Transfer in Thin Liquid Film (2nd Report, the Critical Heat Flux of Nucleate Boiling),” Trans. JSME, Vol.47B, pp.1849-1860, 1981. 12. Katto, Y., “Critical Heat Flux,” Advance in Heat Transfer, Vol.17, pp.1-64, 1985. 13. Katto, Y., “A Physical Approach to Critical Heat Flux of Subcooled Flow Boiling in Round Tubes,” Int. J. Heat Mass Transfer, Vol.33, pp.611-620, 1990A. 14. Katto, Y., “Prediction of Critical Feat Flux of Subcooled Flow Boiling in Round Tubes,” Int. J. Heat Mass Transfer, Vol.33, pp.1921-1928, 1990B. 15. Katto, Y., “A Prediction Model of Subcooled Water Flow Boiling CHF for Pressure in the Range 0.1-20MPa,” Int. J. Heat Mass Transfer, Vol.35, pp.1115-1123, 1992. 16. Katto, Y., and Kunihiro, M., “Study of the Mechanism of Burn-Out in Boiling System of High Burn-Out HeatFlux,” Bull. JSME, Vol.16, pp.1357-1366, 1973. 17. Katto, Y., and Monde, M., “Study of Mechanism of Burn-Out in a High Heat-Flux Boiling with an Impinging Jet,” Trans. JSME, Vol.41, pp.306-314, 1975. 18. Katto, Y., and Yokoya, S., “Critical Heat Flux on a Disk Heater Cooled by a Circular Jet of Saturated Liquid Impinging at the Center,” Int. J. Heat Mass Transfer, Vol.31, pp.219-227, 1988. 19. Lienhard, J. H., and Wong, P. T. Y., “The Dominant Unstable Wavelength and Minimum Heat Flux During Film Boiling on a Horizontal Cylinder,” J. Heat Transfer, Trans. ASME, Vol.86, pp.220-226, 1964. 20. Lienhard, J. H., Dhir, V. K., and Riherd, D. M., “Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates,” J. Heat Transfer, Trans. ASME, Vol.95, pp.477-482, 1973. 21. Lienhard, J. H., and Eichhorn, R., “On Predicting Boiling Burnout for Heater Cooled by Liquid Jets,” Int. J. Heat Mass Transfer, Vol.22, pp.774-776, 1979. 22. Lee, C. H., and Mudawar, I., “A Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling Based on Local Bulk Flow Conditions,” Int. J. Multiphase Flow, Vol.14, pp.711-728, 1988. 23. Liu, X., Lienhard J. H.V., and Lombara J. S., “Convective Heat Transfer by Impingement of Circular Liquid Jets,” J. Heat transfer, Vol.113, pp.571-582, 1991. 24. Liu, Z. H., and Zhu, Q. Z., “Prediction of Critical Heat Flux for Convective Boiling of Saturated Water Jet Impinging on the Stagnation Zone,” J. Heat Transfer, Trans. ASME, Vol.124, pp.1125-1130, 2002. 25. Liu, Z. H., Tong, T. F., and Qiu, Y. H., “Critical Heat Flux of Steady Boiling for Subcooled Water Jet Impingement on the Flat Stagnation Zone,” J. Heat Transfer, Trans. ASME, Vol.126, pp.179-183, 2004. 26. Ma, C.F., and Bergles, A. E., “Jet Impingement Nucleate Boiling,” Int. J. Heat Mass Transfer, Vol.29,pp.1095-1101,1986. 27. Masuda, H., Ebata, A., Teramae, K., andHishinuma, N., “Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles),” Netsu Bussei (Japan), Vol.7, No.4, pp.227-233,1993. 28. Maxwell, J. C., “A treatise on Electricity and Magnetism (1st edition),”Clarendon Press, Oxford,1873. 29. Meyer, S. L., “Propagation of Error and Least Squares,” in Data Analysis for Scientists and Engineers, Wiley, New York, 1975. 30. Miyasaka, Y., and Inada S., “The Effect of Pure Forced Convection on the Boiling Heat Transfer Between a Two-Dimensional Subcooled Water Jet and a Heated Surface,” J. Chemical Engineering of Japan, Vol.13, No.1, pp.22-28, 1980a. 31. Miyasaka, Y., Inada, S. and Owase, Y., “Critical Heat Flux and Subcooled Nucleate Boiling in Transient Region between a Two-Dimensional Water Jet and a Heated Surface,” J. Chemical Engineering of Japan, Vol.13, No.1, pp.29-35, 1980b. 32. Monde, M., “Burnout Heat Flux in Saturated Forced Convection Boiling with an Impinging Jet,” Trans. JSME, vol. 46B, pp. 1146-1155, 1980. 33. Monde, M., “Critical Heat Flux in Saturated Forced Convective Boiling on a Heated Disk with an Impinging, a New Generalized Correlation,” Trans. JSME, Vol.50B, pp.1392-1396, 1984. 34. Monde, M., “Critical Heat Flux in Saturated Forced Convection Boiling on a Heated Disk with an Impinging Jet,” J. Heat Transfer, Trans. ASME, Vol.109, pp.991-996, 1987. 35. Monde, M., and Katto, Y., “Burnout in a High Heat-Flux Boiling System with an Impinging Jet,” Int. J. Heat Mass Transfer, Vol.21, pp.295-305, 1978. 36. Nukiyama, S., “The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure,” J. JSME, Vol.37, pp.367, 1934.Translated in Int. J. Heat Mass Transfer, Vol.9, pp.1419-1933, 1966 37. NSWC, “Spray Cooling Technologies Market Investigation,” The Naval Surface Warfare Center, Crane IN, 2000. 38. Pasamehmetoglu, K. U., and Gunnerson, F. S., “A Theoretical Prediction of Critical Heat Flux in Subcooled Pool Boiling During Power Transients,” ANS Proc., National Transfer Conf., pp. 125-134, 1988. 39. Pan, C., and Lin, T. L., “A Model for Surface Wettability Effect on Transition Boiling Heat Transfer,” Proc. of 9th Int. Heat Transfer Conf., Vol.2, pp.147-152, 1990. 40. Qiu, Y. H., and Liu, Z. H., “Critical Heat Flux in Saturated and Subcooled Boiling for R-113 Jet Impingement on the Stagnation Zone,” Applied Thermal Engineering, Vol.25, pp.2367-2378, 2005. 41. Robidou, H., Auracher, H., Gardin, P., and Lebouche, M., “Controlled Cooling of a Hot Plate with a Water Jet,” Experimental Thermal and Fluid Science, Vol.26, pp.123-129, 2002. 42. Rohsenow, W. M., “Boiling,” in Handbook of Heat Transfer Fundamentals, 2nd Edition., ed. by Rosenow, W. M., Hartnerr, P. and Ganic, E. G., McGraw-Hill, New York, 1985. 43. Sharan, A., and Lienhard, J. H., “On Predicting Burnout in the Jet-Disk Configuration,” J. Heat Transfer, Trans. ASME, Vol.107, pp.398-401, 1985. 44. Shoji, M., and Kuroki, H., “A Model of Macrolayer Formation in Pool Boiling,” Proc. 10th Int. Heat Transfer Conf., Vol.5, pp.147-152, 1994. 45. Stephan, K., and Abdelsalam, M., “Heat Transfer Correlations for Natural Convection Boiling,” Int. J. Heat Mass Transfer, Vol.23, pp.73–81,1980. 46. Sun, K. H., and Lienhard, J. H., “The Peak Pool Boiling Heat Flux on Horizontal Cylinders,” Int. J. Heat Mass Transfer, Vol.13, pp.1425-1439, 1970. 47. Tay, A. A. O., Xue, H., Yang, C., “Cooling of Electronic Components with Free Jet Impingement Boiling,” 2002 International Society Conference on Thermal Phenomena, pp.387-394, 2002. 48. Vassallo, P., Kumar, R., and D’Amico, S., “Pool Boiling Heat Thansfer Experiments in Silica-Water Nano-Fluids,” Int. J. Heat Mass Transfer, Vol.47, pp.407-411, 2004. 49. Webb, B. W. and Ma, C. F., “Single-Phase Liquid Jet Impingement Heat Transfer,” Advance in Heat Transfer, Vol.26, pp.105-217, 1995. 50. Wolf, D. H., Incorpera, F P. and Viskanta, R., “Jet Impingement Boiling,” Advance in Heat Transfer, Vol.23, pp.1-132, 1993. 51. Whally, P. B., “Two-Phase Flow and Heat Transfer,” Oxford Chemistry Primers, 42, 1996. 52. Zhao, H. Y., and Ma, C.-F., “Analytical Study of Heat Transfer with Single Circular Free Jets under Arbitrary Heat Flux Conditions,” J. Beijing Polytechnic University, Vol.15, pp.7-13, 1989. 53. Zuber, N., “On the Stability of Boiling Heat Transfer,” J. Heat Transfer, Trans. ASME, Vol.80, pp.711-720, 1958. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34554 | - |
dc.description.abstract | 本文建立一套噴柱面積與發熱面積比例等於1的實驗系統,討論噴柱在停滯區的熱傳現象,並以實驗數據導得臨界熱通量預測式。本實驗以控制熱通量的方式做穩態量測,變化參數有:發熱直徑尺寸(4mm、6mm、8mm);過冷度(20℃、30℃);噴柱速度(0.5m/s、1.0m/s、2.0m/s)。藉由各參數變化,瞭解噴柱沸騰在不同沸騰區域的熱傳機制。另外,本實驗於發熱尺寸8mm、過冷度30℃、噴柱速度2.0m/s下測得最大臨界熱通量測得值為522W/cm2相對表面過熱度37℃。最後,更進一步藉由前人的基礎,並以本文實驗數據導出臨界熱通量的預測式,誤差在±15%以內。 | zh_TW |
dc.description.abstract | We construct an experiment system to investigate the heat transfer phenomenon at the stagnation region of an impinging jet with a unitary ratio of jet cross section and heat transfer area. Thereafter, a critical heat flux equations deduced from the experimental results was obtained. All experiment data was measured in steady state. Experiments were carried out at heat transfer surface diameters of 4~8mm, jet velocities of 0.5~2.0m/s and liquid subcooling of 20℃ and 30℃. With the parameter varying, we can interpret the heat transfer mechanism in each boiling region. Besides, the maximum CHF and wall superheat were 522W/cm2 and 37℃, recorded at heat transfer surface diameter of 8mm,jet velocity of 2.0m/s and liquid subcooling of 30℃. Finally, we deduce an equation to forecast the critical heat flux in jet stagnation region within a 15% error. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:14:52Z (GMT). No. of bitstreams: 1 ntu-95-R91522316-1.pdf: 1482854 bytes, checksum: ae4498620f36046892b6b05b61e66225 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目錄 iii 圖目錄 v 表目錄 vi 符號說明 vii 第一章 緒論 1 1.1前言 1 1.2文獻回顧 5 1.2.1池沸騰文獻 5 1.2.2強制對流沸騰文獻 6 1.2.3奈米流體熱傳文獻 7 1.3研究目的 10 第二章 實驗原理 11 2.1噴柱沸騰 11 2.2臨界熱通量的判定 13 第三章 實驗設備與步驟 16 3.1實驗設計 16 3.2實驗設備 16 3.2.1主測試循環系統 16 3.2.2溫控及冷卻系統 21 3.2.3程式介面與溫度紀錄系統 21 3.3實驗步驟 24 3.3.1實驗硬體的架設 24 3.3.2實驗前的預備 24 3.3.3實驗步驟 25 3.4誤差分析 27 第四章 實驗結果與分析 31 4.1典型停滯區噴柱沸騰曲線 31 4.2噴柱速度的影響 35 4.3液體過冷度的影響 39 4.4發熱面尺寸的影響 43 4.5 臨界熱通量的預測 47 第五章 結論與建議 52 5.1結論 52 5.2建議 53 參考文獻 54 附錄 58 | |
dc.language.iso | zh-TW | |
dc.title | 噴柱沸騰之熱傳研究 | zh_TW |
dc.title | Investigation of the Impinging Jet Boiling Heat Transfer | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張淵仁,吳聖俊 | |
dc.subject.keyword | 噴柱,臨界熱通量,沸騰熱傳,停滯區對流, | zh_TW |
dc.subject.keyword | Jet,Critical heat flux,boiling heat transfer,stagnation zone force convection, | en |
dc.relation.page | 63 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-02-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。