Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34543
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國峰(Gwo-Fong Lin)
dc.contributor.authorChun-Ming Wangen
dc.contributor.author王俊明zh_TW
dc.date.accessioned2021-06-13T06:14:15Z-
dc.date.available2006-02-09
dc.date.copyright2006-02-09
dc.date.issued2006
dc.date.submitted2006-02-07
dc.identifier.citationArabie P, Hubert LJ, Soete Gd. 1996. Clustering and classification. Singapore: World Scientific.
Burn DH. 1989. Cluster analysis as applied to regional flood frequency. Journal of Water Resources Planning and Management 115(5): 567-582.
Chang FJ, Chang LC, Huang HL. 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16(13): 2577-2588.
Chang LC, Chang FJ, Chiang YM. 2004. A two-step-ahead recurrent neural network for stream-flow forecasting. Hydrological Processes 18(1): 81-92.
Chang FJ, Chang LC, Wang YS. Enforced Self-Organizing Map Neural Networks for River Flood Forecasting. Hydrological Processes. (accepted)
Chiang YM, Chang LC, Chang FJ. 2004. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290(3-4): 297-311.
Everitt B. 1980. Cluster analysis. New York: Halsted Press.
Gordon AD. 1999. Classification. Boca Raton: Chapman & Hall/CRC.
Haykin S. 1999. Neural Networks: a comprehensive foundation. New Jersey: Prentice Hall.
Jain, AK, Murty, MN, Flynn, PJ. 1999. Data clustering: A review. Acm Computing Surveys 31(3): 264-323.
Johnson RA, Wichern DW. 2002. Applied multivariate statistical analysis. New Jersey: Prentice Hall.
Kohonen T. 2001. Self-Organizing Maps. New York: Springer.
Lin, GF, Chen L. 2004. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289(1-4): 1-8.
Lin GF, Chen LH. 2005. Time Series Forecasting by Combining the Radial Basis Function Network and the Self-organizing Map. Hydrological Processes 19(10): 1925-1937.
Lin GF, Chen LH, Kao SC. 2005. Development of regional design hyetographs. Hydrological Processes 19(4): 937-946.
Lin GF, Chen LH. Identification of Homogeneous Regions for Regional Frequency Analysis Using the Self-organizing Map. Journal of Hydrology. doi:10.1016/j.jhydrol.2005.09.009.
MacQueen, J. 1967. Some methods for classification and analysis. of multivariate observations. Proceedings of the 5th. Berkeley. Symposium of Mathematical Statistics and Probability 281– 297.
Mangiameli P, Chen SK, West D. 1996. A comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research 93: 402-417.
Michaelides SC, Pattichis CS, Kleovoulou G. 2001. Classification of rainfall variability by using artificial neural networks. International Journal of Climatology 21: 1401-1414.
Mosley MP. 1981. Delimitation of New Zealand hydrological regions. Journal of Hydrology 49: 173-192.
Nathan RJ, McMahon TA. 1990. Identification of homogenous regions for the purpose of regionalization. Journal of Hydrology 121: 217-238.
Riggs HC. 1973. Regional analysis of streamflow characteristics. Techniques of Water Resources Investigations, Book 4, Ch. B3. Washington, D.C.: USGS.
Schreiber P, Demuth S. 1997. Regionalization of low flows in southwest Germany. Hydrological Sciences 42(6): 845–858.
Smakhtin, V.U. 2001. Low flow hydrology: a review. Journal of Hydrology 240(3-4): 147-186.
Vogel RM, Kroll CN. 1992. Regional hydrogeologic–geomorphic relationship for the estimation of low-flow statistics. Water Resources Research 28(9): 2451–2458.
Yu PS, Yang TC, Liu CW. 2002. A regional model of low flow for southern Taiwan. Hydrological processes 16: 2017-2034.
WRPC. 1986. Hydrogeological Map of Taiwan. Taipei: Water Resource Planning Commission (WRPC).
Ward, Jr. JH. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236-244
Zhang J, Hall M. 2004. Regional flood frequency analysis for the Gan-Ming River basin in China. Journal of Hydrology 296(1-4): 98-117.
Zhang X, Li Y. 1993. Self-Organizing Map as a new method for clustering and data analysis. In: Proceedings of International Joint Conference on Neural Networks. Nogoya. 2448-2451.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34543-
dc.description.abstract對於水文學者來說,區域化(regionalization)是用來推估未設測站地區某些水文資訊的有效工具。其中,水文均一區的劃分是區域化中極為重要的工作。過去,水文均一區的劃分是透過三種複雜的統計技術(包含主成分分析、群集分析及識別分析)的結合而完成。在這三種統計技術中,主成分分析並非劃分水文均一區必要的步驟;大部份關於水文均一區的劃分的問題則存在於傳統的群集分析方法中;而識別分析在水文均一區劃分中的用法則並不直覺。因此傳統水文均一區的劃分方法並不是一個良好的方法。水文學家強烈需要簡單且直觀的方法來劃分水文均一區。
本文的目的在於發展一整合群集分析及識別分析的方法,以改進水文均一區劃分的方法。本論文首先說明劃分水文均一區的本質。由於大部分水文均一區劃分的問題發生於傳統群集分析方法中,所以接著以實例說明傳統群集分析方法的缺失。本論文所提出的方法以自組織映射網路(self-organizing map, SOM)為基礎。因此,本論文首先簡單的介紹自組織映射網路的理論。接著說明本論文基於自組織映射網路而發展的方法的理論及使用方法。本文所提出的方法,可簡稱為SOMCD(SOM-based cluster and discrimination analysis)。為測試SOMCD的性能,本論文將數個人為產生的資料集以SOMCD加以分析。從分析結果中可發現,利用SOMCD,可同時展現出資料點間的相對拓璞關係、決定適當的群集數目並將未知的資料點恰當的配置到已知的群集中,且不會漏失任何原始資料中的重要資訊。由可決定適當的群集數目這個優點來說,SOMCD確實較傳統群集分析法優越。而將未知的資料點配置到已知的群集中的結果顯示與真實情況相符。
接下來,本論文利用SOMCD分析影響台灣南部地區低流量延時曲線的水文因子。結果顯示SOMCD的表現確實相當傑出,而分析結果可做為進行台灣南部地區低流量延時曲線的區域化之用。由上述SOMCD的應用中,發現SOMCD不同的參數設定可使用者以不同的觀點檢視所分析的資料。關於SOMCD參數設定的資訊,亦整理並呈現於本論文中。
zh_TW
dc.description.abstractRegionalization is a useful tool for hydrologists to extrapolate certain hydrological information at ungauged sites. The delineation of hydrologically homogeneous regions is the major task. The conventional method for the delineation of hydrologically homogeneous regions consists of three complicated statistical techniques (principal component analysis, cluster analysis, and discrimination analysis). Among these three methods, principal component analysis is not necessary; a large amount of severe problems (such as the determination of the number of clusters) encountered in the delineation of hydrologically homogeneous regions arise in conventional clustering methods and the employ of discrimination analysis is not intuitional. Thus the conventional method for the delineation of hydrologically homogeneous regions is not an excellent method. An easy and intuitional method for the delineation of hydrologically homogeneous regions is of great demand.
For facilitating the delineation of hydrologically homogeneous regions, the purpose of this thesis is to develop a method that combines cluster analysis and discrimination analysis. Therefore, the substance of the conventional method for the delineation of hydrologically homogeneous regions is first described. Since most of problems arise in conventional clustering methods, the shortcomings of the conventional clustering methods are then indicated through several examples. The basis of the proposed method is self-organizing map (SOM). Hence, the simple introduction of self-organizing map is given and then the theory of the proposed method is presented. The proposed method is based on self-organizing map, and combines cluster analysis and discrimination analysis. Thus, the proposed method is named SOMCD (SOM-based cluster and discrimination analysis). Artificial data sets are employed to examine the capabilities of SOMCD. By the results of the applications, it is shown that using SOMCD one can view the relative topological relationships of input patterns, determine the proper number of clusters, and assign unknown patterns to known clusters without losing any information of input patterns. Regarding the capability of determining the proper number of clusters, SOMCD is superior to conventional cluster analysis. The discrimination results also show that the assignments of unknown patterns to known clusters are reasonable using SOMCD.
SOMCD is also applied to analyze the hydrological factors affecting low-flow duration curves in southern Taiwan. The results of SOMCD to the actual data set also show that SOMCD is an outstanding method. It can be derived from the results that different parameters settings of SOMCD make SOMCD inspect the data set in different views. Suggestions of the parameters setting of SOMCD are extracted from the applications and are presented in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:14:15Z (GMT). No. of bitstreams: 1
ntu-95-D89521015-1.pdf: 4811154 bytes, checksum: a6d04984fdf93f0284c738e661bd0751 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vii
List of figures x
List of tables xiv
1. Introduction 1
1.1. Regionalization 1
1.2. Insights into cluster analysis and discrimination analysis 6
1.3. Drawbacks of the conventional methods for regionalization 7
1.4. Artificial neural networks 9
1.5. Purpose and organization 11
2. Shortcomings of the conventional clustering methods 12
2.1. Hierarchical clustering methods 12
2.2. Applications of hierarchical clustering methods to an artificial data set 14
2.3. Nonhierarchical clustering methods 22
2.4. Applications of the K-means method to artificial data sets 23
2.5. Discussions 23
3. Self-organizing map 30
3.1. Architecture of SOM 30
3.2. Algorithm of SOM 32
3.2.1. The competitive process 32
3.2.2. The cooperative process 33
3.2.3. The adaptive process 33
4. SOM-based cluster and discrimination analysis (SOMCD) 35
4.1. Method 35
4.2. Components of SOMCD 38
5. Applications of SOMCD to artificial data sets 41
5.1. Uniformly distributed data set 41
5.2. Data set with clusters 44
5.3. Shape of the lattices 45
6. Applications of SOMCD to the low-flow characteristics of southern Taiwan 53
6.1. Study area and data description 53
6.2. Results 57
7. Discussions of the applications to the low-flow characteristic in southern Taiwan 66
7.1. Demonstrations of the relative topological relations of input patterns using the feature map 66
7.2. Nested clusters and number of clusters 68
7.3. Validations of the discrimination maps 75
7.4. Parameters settings 81
7.5. Comparisons of SOMCD with conventional regionalization methods 82
8. Conclusions 84
References 87
dc.language.isoen
dc.subject識別分析zh_TW
dc.subject區域化zh_TW
dc.subject群集分析zh_TW
dc.subject自組織映射網路zh_TW
dc.subjectregionalizationen
dc.subjectcluster analysisen
dc.subjectdiscrimination analysisen
dc.subjectself-organizing mapen
dc.title以自組織映射網路整合群集分析及識別分析zh_TW
dc.titleIntegration of cluster analysis and discrimination analysis using self-organizing mapen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭克聲,謝尚賢,張斐章,陳主惠,陳莉
dc.subject.keyword區域化,群集分析,識別分析,自組織映射網路,zh_TW
dc.subject.keywordregionalization,cluster analysis,discrimination analysis,self-organizing map,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2006-02-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved