Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34520
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧茂華
dc.contributor.authorYung-Der Chenen
dc.contributor.author陳永得zh_TW
dc.date.accessioned2021-06-13T06:12:57Z-
dc.date.available2006-02-13
dc.date.copyright2006-02-13
dc.date.issued2006
dc.date.submitted2006-02-08
dc.identifier.citation中文部份
林沛彥(1999)石墨包裹奈米晶粒材料與機械設計,共72頁 。
林春長(2002)石墨包裹奈米鈷晶粒之純化研究。台灣大學地質科學系碩士論文,共124頁。
沈曾民(2003)新型碳材料。化學工業出版社出版。
汪健民(1998)材料分析。中國科學學會出版,共743頁。
莊萬發 ( 1994 ) 超微粒子理論應用。復漢出版社,共160頁
張麗娟(1999)石墨包裹奈米鎳晶粒的純化分離效果初步研究。台灣大學地質科學系碩士論文,共140頁。
鄭啟輝(2002)用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果。台灣大學地質科學系碩士論文,共69頁。
蕭敦仁 ( 2005 ) 石墨包裹奈米晶粒在高溫高壓下合成鑽石的初步探討.台灣大學地質科學系碩士,共85頁
英文部份
Azzaoui, M.El., Hou, M., Pattyn, H., Verheyden, J., Deweerd, E., Koops,G. and Zhang, G. L. (1999) “Lattice dynamics of Co nanoparticles inAg”. Nanostructured Materials, Vol. 12, p.299-302.
Banhart, F., Redlich ,P., and Ajayan, P. M. (1998) “The migration of metal atoms through carbon onions. ” Chem. Phy. Letters, Vol.292,p.554-560.
Cullity, B. D. (1978) “Elements of X-ray Diffraction”, 2nd Edition,Chapter 3, p.81-86.
Dong, X. L., Zhang, Z. D., Jin, S. R., and Kim, B. K. (1999)“Carbon-coated Fe-Co(C) nanocapsulates prepared by arc discharge inmethane” J. Appl. Phys., Vol.86, p.6701-6706.
Dravid, V. P.., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J. H.,Johnsno, D. L., Mason, T. O. and Weertman, J. R. (1995)“Controlled-size nanpcapsules.” Nature, Vol.374, p.602-604.
Deuthman, A. D. and Partkya, R. J. (1998) “Diamond film deposition.”Adv. Master. Processes, Vol.6, No.89, p.29-33.
Dillon, A. C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A. and Hebenn, M. J.(1999) “A simple and complete purification of single-walled carbon nanotube materials.” Adv. Mater. Vol.11,p.1354-1358.
Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H. and Hwang, J. H.(1997) “A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters.” J. Mater.Res., Vol.12, p.3328-3333.
Guerret-Piecourt, C.; LeBouar, L.; Lolseau, A. and Pascard, H.; Nature 1994, Vol.372, p.761-763
Hayashi, T.; Hirono, S.; Tomita, M. and Umemura, S. Nature 1996,Vol.381, p.772-774
Host, J. J., Dravid, V. P., Teng, M. H., Elliott, B. R., Hwang, J. H.,Mason. T. O., Johnson, D. L. (1997) Graphite encapsulated nanocrystals produced using a low carbon: metal ration. J. Mater. Res., Vol.12,p.1268-1273.
Host, J. J., Block, J. A., Pravin, A., Dravid, V. P., Alpers, J. L., Sezen, T.and LaDuca, R. (1998a) “Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals.” J. Appl. Phys., Vol.83, p.793-801.
Host, J. J., Dravid, V. P., Teng, M. H. (1998b) “Systematic study of graphite encapsulated nickel nanocrystal synthesis with formation mechanism implication.” J. Mater. Res., Vol.13, p.2547-2555.
Howes, V. R. (1962) “The graphitization of diamond.” Proc. Phys. Soc.,Vol.80, p.648-662.
Jiao, J. and Seraphin, S. (1996) “Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanopaticles.” J. Appl. Phys., Vol.80, p.103-108.
Jiao, J. and Seraphin, S. (1997) “Carbon encapsulated nanopaticles of Ni,Co, Cu and Ti.” J. Appl. Phys., Vol.83, p.2442-2448.
Kratdchmer, E., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R.(1990) “ Solid C60:a new form of carbon. ” Nature, Vol. 347, p.354-358
Kuznestov, V. L., Ziberberg, I. L., Butenko, V., Yu., Chuvilin, A. L. and Segall, B. (1999) “Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface.” J. Appl.Phys., Vol.86, p.863-870.
Lide, D. R. (1999) CRC Handbook of Chemistry and Physics 80th edition, p.4-7~4-123.
Merkulov, V. I., Lowndes, D. H. and Baylor, L. R. (2001)“Scanned-probe field-emission studies of vertically aligned carbon nanofibers.” J. Appl. Phys., Vol.89, p.1933-1937.
Pierson, H. O. (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes publications.
Porter, D. A. and Easterling, K.E. (1981) Phase transformation in metals and alloys, second edition.
Reznik, A., Richter, V. and Kalish, R. (1997) “Kinetics of the conversion of broken diamond (sp3) bonds to graphite (sp2) bonds.”Phys. Rev. B, Vol.56, p.7930- 7934.
Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, M. and Subramoney, S.(1993) “Single crystal metals encapsulated in carbon nanoparticles.”Science, Vol.259, p.346-348.
Seraphin, S., Zhou, D., Jiao, J., Withers, J. C. and Loutfy, R. (1993)“Selective encapsulation of the carbides of yttrium and titanium into
carbon nanoclusters.” Appl. Phys. Lett., Vol.63, p.2073-2075.
Seraphin, S., Zhou, D., Jiao, J., Minke, M. and Wang, S. (1994)“Catalytic role of nickle, palladium, and platinum in the formation of carbon nanoclusters. Chem. Phys. Lett., Vol.217, p.191.
Seraphin, S., Zhou, D. and Jiao, J. (1996) “Filling the carbon nanocages.” J. Appl. Phys., Vol.40, p.2097-2104.
Shao, W. Z., Ivanov, V. V., Zhen, L., Cui, Y. S. and Wang, Y. (2003) “A study on graphitization of diamond in copper-diamond composite materials.” Mater. Lett., Vol.58, p.146-149.
Strong, H. M. and Hanneman, R. M. (1967) “Crystallization of diamond and graphite.” J. Chem. Phys., Vol.46, p.3668-3676.
Teng, M. H., Host, J. J., Hwang, J. H., Elliott, B. R., Weertman, J. R., Mason. T. O., Dravid, V. P. and Johnson, D. L. (1995) “Nanophase Ni paritcles produced by a blown arc method.” J. Mater. Res., Vol.10,p.233-236.
Tomita, M., Saito, Y. and Hayashi, T. (1993) “LaC2 encapsulated in graphite nanoparticles.” Jpn. J. Appl. Phys., Vol.32, p.L280-282.
Wang, C. Z., Ho, M. K., Shirk, M. D. and Molian, P. A. (2000) “Laser-induced graphitization on a diamond (111) surface. Phys. Rev.Lett., 85, 4092-4095.
Yudasaka, M., Kasuya, Y., Takahashi, K., Takizawa, M., Bandow, S.and Iijima, S. (2002) “Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes.” Appl. Phys. A, Vol.74,p.377-385.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34520-
dc.description.abstract石墨包裹奈米顆粒(GEM)因為具有極大的比表面積及穩定的物性,
所以是一種非常具有應用潛力的奈米材料。GEM之結構分為內核及外殼,內核是奈米級的金屬顆粒,外殼則是多層的石墨,顆粒大小介於10-100 nm之間。由於外層的石墨層可保護內部的金屬顆粒免於氧化或酸侵蝕,因此可以長期保持金屬顆粒在奈米尺度下的行為與特性。
本實驗室使用電弧法合成GEM多年,經過前人(Lin et al., 2000及
Cheng et al., 2001)改良製程,發現只要對產物做真空熱處理或在實驗進行中加入甲烷以增加額外碳源,都可以大幅提高GEM的產量。但是在穿透式電子顯微鏡的觀察下,產物的顆粒仍有分布不集中,大小差異過大(同一次實驗中顆粒大小從10 nm至200 nm都有)等現象,對於後續的基礎性質研究及應用是很大的問題。雖然有許多不同的方法可以控制GEM的粒徑大小,包括改變實驗中的環境氣體種類與壓力等,但是在理論上其效果都比不上直接對電弧噴氣。由於GEM的成長主要是發生在電弧區電漿外圍的一薄層空間,顆粒在此區間會彼此碰撞聚合成長,噴氣除了可以降低顆粒在此區間彼此碰撞聚合的機會,也會壓縮此區間的範圍,從而達到控制並降低平均粒徑大小的效果。Teng等人在1995年曾經使用過噴氣電弧製造奈米
鎳顆粒,雖然成功讓顆粒粒徑減小到10 nm以下,但是卻因為噴氣的冷卻作用,使得原料的蒸發量驟降而降低產量。
本研究工作分為兩大部分,第一是為了要能夠控制產物的粒徑,我們設計製造了全新的二號真空艙,除了改善原來一號艙的缺點,更重要的是我們率先採用了環型噴氣的設計來合成GEM。初步實驗結果發現,當使用環型噴氣合成石墨包裹奈米鐵晶粒,產物會自燃而形成氧化鐵;然而在一號艙未噴氣條件下並無此現象,顯示顆粒變小後反而促進了鐵的自燃反應,目前雖以水中收集法可解決初產物在一開艙收集時就立刻自燃氧化的問題,但在後續酸溶純化過程中仍會發生全部顆粒迅速氧化的現象,此問題目前仍無解,有待未來解決。在第二部份的工作則是為了要發展出有效的方法以避免因為噴氣而減低產量。我們根據合成GEM的機制,設計一序列的實驗,結果發現使用人造鑽石作為碳源時,初產物的產量提高了50%,而酸溶後純化之良率也提高為250%。由於人造鑽石在常壓下是亞穩定相,所以在實驗中比石墨(原始實驗所採用的碳源)更容易溶進金屬中,因而提高了石墨在金屬中的溶解度與均勻度,使得電弧所蒸發出的金屬與碳混合蒸氣也更均勻,有效減低了因為碳含量過少或過多所導致的包裹不完全或是碳質碎屑過多的問題。
zh_TW
dc.description.abstractGraphite Encapsulated Metal (GEM) nanoparticle is a new composite
material first found in 1993. GEM has a shell (graphite layers) and core
(metal nanocrystals) structure, and a 10~100 nm size range. Because the
graphite layers can protect the inner metal cores form oxidation and acid
erosion, the new material provides an excellent opportunity to study the
property and behaviors of nanoparticles.
We have been using the modified arc-discharge method to synthesize
GEM for some years, and have come up with some effective processes to
improve the efficiency of the method. For example, by adding methane into
the arc-discharge or by annealing the synthesized raw powder, both processes
can increase the yields of GEM. However, neither process can control the
size distribution of the GEM, i.e., the properties of the powders are not uniform.
To control the sizes of the powder, using a blown-arc may be the best method.
Unfortunately, the blown-arc method will also decrease the production rate
dramatically.
To control the sizes of GEM, a new arc-discharge system with a circular
blown jet was designed and built. The preliminary results show that the sizes
of the Fe-GEM produced in this new system are so small that once exposed to
the air the GEM spontaneously oxidize into iron oxides. Though the
oxidation can be prevented by collecting the GEM into water, the powder will
still oxidize during the acid-bath process.
To maintain an adequate production rate while controlling the sizes of the
GEM, a modified arc-discharge method using synthetic diamond powder as
carbon source (in stead of graphite) was developed. Using diamond carbon
3
source proved to be an effective modification that the amount of the as-made
powder has increased by 50%, and the after acid-bath powder has also
increased by 250%. Because diamond is a metastable phase under ordinary
temperature and pressure, it dissolved into the metal much easier than graphite.
As a result that the carbon distributes more evenly in the melting metal, and
thus the carbon vapor mixes more uniformly with the metal vapor during the
evaporation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:12:57Z (GMT). No. of bitstreams: 1
ntu-95-R91224212-1.pdf: 62045672 bytes, checksum: 71f291ff817f909f49981b6f83a1c878 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致謝 1
Abstract 2
摘要 4
圖目錄 6
表目錄 9
論文大綱 10
第一章 研究目的 13
第二章 文獻回顧 15
2-1 奈米材料 15
2-2 奈米級材料製作方法簡介 16
2-3 石墨包裹奈米晶粒 17
2-3.1 石墨包裹奈米晶粒發現簡史 18
2-3.2 電弧法製程 21
2-3.3 包裹機制 23
2-3.4 二步驟機制 25
2-3.5 石墨包裹奈米晶粒之外型與產狀 29
2-4 顆粒粒徑控制 32
第三章 實驗方法與步驟 37
3-1 實驗儀器 37
3-1.1 原始實驗 37
3-1.2 修正實驗 39
3-2 實驗步驟 42
3-2.1 原始實驗步驟 42
3-2.2 修正實驗步驟 46
3-3 實驗分析儀器 48
第四章 實驗結果與討論 51
4-1 噴氣式電弧真空艙系統的設計與建造 51
4-1.1 第一號真空艙電弧系統 51
4-1.2 第二號真空艙電弧系統 53
4-2 使用人造鑽石作為碳源合成石墨包裹奈米晶粒 63
4-2.1 產物產量 63
4-2.2 產物外型與結構 68
4-3 使用第二號真空艙合成石墨包裹奈米鐵晶粒初步結果 73
4-3.1 產物產量與結構 73
4-3.2 石墨包裹奈米鐵晶粒的自燃現象 76
第五章 結論 80
未來建議 81
參考文獻 82
中文部份 82
英文部份 83
附錄 標本編號 88
dc.language.isozh-TW
dc.subject鐵zh_TW
dc.subject石墨zh_TW
dc.subject包裹zh_TW
dc.subjectencapsulateen
dc.subjectironen
dc.subjectgraphiteen
dc.title以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果zh_TW
dc.titlePreliminary results of using synthetic diamond and
a blown arc to produce graphite encapsulated iron
nanoparticles
en
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃武良,王玉瑞,鄧茂英
dc.subject.keyword石墨,包裹,鐵,zh_TW
dc.subject.keywordgraphite,encapsulate,iron,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2006-02-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
60.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved