請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34519完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Lin, Ching-Fuh) | |
| dc.contributor.author | Yi Ho | en |
| dc.contributor.author | 何頤 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:12:53Z | - |
| dc.date.available | 2006-02-15 | |
| dc.date.copyright | 2006-02-15 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-02-08 | |
| dc.identifier.citation | 參考資料:
[1.1] M. Sugawara,* H. Ebe, N. Hatori, and M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers”, Physical Review B 69, 235332 ~2004 [1.2] Andrea Fiore, ”Quantum Dot Lasers”,Ecole Polytechnique Federale de Lausanne [1.3] Shun Lien Chuang ,”Physics of optoelectronic devices”, Wiley series in pure and applied optics, p487-493 [1.4] “Asada M, Miyamoto Y and Suematsu”, IEEE J. Quantum electron. , QE-22 , 1915 , (year)1986 [1.5] Elias Towe ,“Nanophotonics” , Laboratory for Photonics Department of Electrical and Computer Engineering, Carnegie Mellon University, towe@cmu.edu [1.6] Sanjay Krishna, P. Bhattacharya, J. Singh, T. Norris, J. Urayama, Patrick J. McCann, and Khosrow Namjou, “Intersubband Gain and Stimulated Emission in Long-Wavelength Intersubband In(Ga)As–GaAs Quantum-Dot Electroluminescent Devices”, IEEE Journal of Quantum Electronics, Vol. 37, No. 8, August 2001 [1.7]Pallab Bhattacharya et al. , “Carrier dynamics and high-speed modulation properties of tunneling injection InGaAs-GaAs quantum-dot lasers ”,IEEE journal of quantum electronics, vol 39, vol 8, pp952, Aug 2003 [1.8] A Biebersdorf, C Lingk, M De Giorgi1, J Feldmann, J Sacher, M Arzberger, C Ulbrich, G B¨ohm, M-C Amann, and G Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser”, J. Phys. D: Appl. Phys. 36 (2003) 1928–1930 PII, S0022-3727(03)64296-8 [1.9] Elias Towe and Dong Pan, “Semiconductor Quantum-Dot Nanostructures: Their Application in a New Class of Infrared Photodetectors”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, No. 3, MAY/JUNE 2000 [1.10] http://www.photonics.com/XQ/ASP/url.readarticle/artid.187/QX/ readart.htm [1.11] Paul A. Cain and Haroon Ahmed, David A. Williams, “Hole transport in coupled SiGe quantum dots for quantum computation”, Journal of Applied Physics Vol 92, Number 1, 1 JULY 2002 [1.12] Lei Zhuang, Lingjie Guo, and Stephen Y. Chou, ”Silicon single-electron quantum-dot transistor switch operating at room temperature”, Applied Physics Letters Vol 72, Number 10, 9 MARCH 1998 [1.13]http://www.evidenttech.com/qdot-videos/quantum-dot-conjugates-video.php 參考資料: [2.1] Andrea Fiore, ”Quantum Dot Lasers”,Ecole Polytechnique Federale de Lausanne [2.2] H. Kissel,* U. Mu¨ller, C. Walther, and W. T. Masselink Yu. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs for intermediate InAs coverage”, Physical Review B, VOLUME 62, NUMBER 11, 15 September 2000-I, [2.3] Hongtao Jiang and Jasprit Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots An eight-band study”, Physical Review B 15, Volume 56, Number 8, AUGUST 1997-II [2.4] Pallab Bhattacharya, Siddhartha Ghosh, Sameer Pradhan, Jasprit Singh, Zong-Kwei Wu, J. Urayama, Kyoungsik Kim, and Theodore B. Norris, ”In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties”, IEEE Transactions on Electron Devices, Volume 46, Issue 5, pp871 – 883, May 1999 [2.5] T. Inoshita and H. Sakaki, “Electron relaxation in a quantum dot: Significance or multiphonon processes”, Physical Review B, vol 46, num 11, 15 September 1992 [2.6] E. A. Zibik L. R. Wilson,* R. P. Green, G. Bastard, R. Ferreira, P. J. Phillips, D. A. Carder, J-P. R. Wells,, J. W. Cockburn, M. S. Skolnick, M. J. Steer, and M. Hopkinson, “Intraband relaxation via polaron decay in InAs self-assembled quantum dots”, Physical Review B 70, 161305(R) (2004) [2.7] Pallab Bhattacharya, Siddhartha Ghosh, Sameer Pradhan, Jasprit Singh, Zong-Kwei Wu, J. Urayama, Kyoungsik Kim, and Theodore B. Norris, “Carrier Dynamics and High-Speed Modulation Properties of Tunnel Injection InGaAs–GaAs Quantum-Dot Lasers”, IEEE Journal of Quantum Electronics, Vol. 39, No. 8, AUG 2003 [2.8] Jie Shan, Feng Wang, Ernst Knoesel, Mischa Bonn , and Tony F. Heinz, “Conductivity in Photo-Excited Insulators Probed by THz Time-Domain Spectroscopy” [2.9] Nikolai N. Ledentsov, M. Grundmann, F. Heinrichsdorff, Dieter Bimberg, Member, IEEE, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Zh. I. Alferov, and J. A. Lott, “Quantum-Dot Heterostructure Lasers”, IEEE Journal of Selected Topics in Quantum Electronics, p 439 , Vol. 6, No. 3, MAY/JUNE 2000, [2.10]M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. SchSchäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots”, Phys. Rev. B 65, 195315(2002) [2.11]Ledenstov et al.Quantum-dot heterostructure lasers. Journal of Selected Topics on Quantum Electronics, May 2000 [2.12] David Klotzkin, Kishore Kamath, and Pallab Bhattacharya, “Quantum Capture Times at Room Temperaturein High-Speed In Ga As–GaAs Self-Organized Quantum-Dot Lasers”, IEEE Photonics Technology Letters, Vol. 9, No. 10, October 1997 1301, [3.1] R. A. Smith, Chapman and Hall LTD, ”Wave mechanics of crystalline solids”, reprinted 1967, p414-422 [3.2] Michael A. Stroscio and Mitra Dutta,”Phonons in nanostructures”, p8-14,35-42, Cambridge university press, 2001 [3.3] Neil W.Ashcroft, N. David Mermin, ”Solid state physics”, p 543- 550, Brooks/Cole, 1976 [3.4] Shun Lien Chuang , ”Physics of optoelectronic devices”, Wiley series in pure and applied optics, p116-120 [3.5]Michael A. Stroscio and Mitra Dutta, ”Phonons in nanostructures”, p8-14,35-42, Cambridge university press, 2001 [3.6] Neil W.Ashcroft, N. David Mermin,”Solid state physics”, p550, Brooks/Cole, 1976 [3.7] D. M. Eagles, ”The Phonon-Assisted Auger Effect in Semiconductors”, Services Electronics Research Laboratory [4.1] H. Jiang and J. Singh, ”Nonequilibrium distribution in quantum dots lasers and influence on laser spectral output”, J. OF App. Phys. Vol 85, Num. 10, 1999 [4.2] 曾煒傑, 量子點雷射之增益和特徵溫度研究,臺灣大學光電 工程學研究所,2006 [4.3] Omar Qasaimeh,”Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers ”, IEEE transactions on electron devices, Vol 50, No. 7, July 2003 [4.4] E. A. Zibik L. R. Wilson,* R. P. Green, G. Bastard, R. Ferreira, P. J. Phillips, D. A. Carder, J-P. R. Wells,, J. W. Cockburn, M. S. Skolnick, M. J. Steer, and M. Hopkinson, “Intraband relaxation via polaron decay in InAs self-assembled quantum dots”, PHYSICAL REVIEW B 70, 161305(R) (2004) [4.5] D. M. Eagles, ”The Phonon-Assisted Auger Effect in Semiconductors”, Services Electronics Research Laboratory [4.6] H. Kissel,* U. Mu¨ller, C. Walther, and W. T. Masselink Yu. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs for intermediate InAs coverage”, Physical Review B, VOLUME 62, NUMBER 11, 15 September 2000-I, [4.7] Andrea Fiore, ”Quantum Dot Lasers”, Ecole Polytechnique Federale de Lausanne [5.1] Shun Lien Chuang ,”Physics of optoelectronic devices”, Wiley series in pure and applied optics, p487-493 [5.2] 吳肇欣, ”非對稱多重量子井在半導體雷射與半導體光放大器的特性研究和應用”(Characteristics and Applications of Semiconductor Lasers and Semiconductor Optical Amplifiers with Nonidentical Multiple Quantum Wells), 2004 [5.3] Yi Ho(何頤), Ching-Fuh Lin(林清富), ”Influence of Carrier Tunneling Between Multiple Quantum Wells On Modulation Response of Laser Diodes”, OPT 2005(台灣光電科技研討會暨 國科 會光電學門研究成果發表會) [5.4]L.A. Coldren et al. , “Diode lasers and photonic integrated circuits”, Willey series, pp198-199 [6.1]Pallab Bhattacharya et al. , “Carrier dynamics and high-speed modulation properties of tunneling injection InGaAs-GaAs quantum-dot lasers ”, IEEE journal of quantum electronics, vol 39, vol 8, pp952, Aug 2003 [6.2]L.A. Coldren et al. , “Diode lasers and photonic integrated circuits”,Willey series, pp198-199 [A.1] Hongtao Jiang and Jasprit Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots:An eight-band study”, Physical Review B, Vol 56, Number 8, 15 AUGUST 1997-II [A.2] E. P. Pokatilov* and V. A. Fonoberov, V. M. Fomin‡ and J. T. , “Development of an eight-band theory for quantum dot heterostructures”, Devreese§, Physical Review B, Vol 64, 45328 [A.3] Shang-Fen Ren, Deyu Lu, G. Qin, “Phonon modes in InAs quantum dots”,Physical Review B, Vol 63, 195315 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34519 | - |
| dc.description.abstract | 本論文主要在研究砷化銦量子點雷射二極體的性質與應用。量子點雷射二極體中,載子捕捉受限制的聲子瓶頸效應,對於其作為光電元件的影響很大。為了獲得更多微觀的載子動力學資訊,本論文探討量子點變溫條件下的電激發光增益頻譜,載子捕捉與聲子瓶頸造成的非平衡態費米狄拉克分布等現象,可獲得Auger載子復合與電子-聲子散射率等微觀資訊。經由曲線擬合,可證實砷化銦量子點中非放射性復合主因為LA聲子,載子捕捉為LO聲子且聲子瓶頸對增益頻譜的光子增益尖峰值有明顯影響,量子點中的載子散射較塊材明顯受限等等結論。
為了描述量子點中尺寸分布對頻譜造成的影響,一般普遍採用'能量'上的高斯函數加以處理,此章根據前人實驗結果,提出對'尺寸'的高斯函數來處理增益計算,以達到更好的曲線擬合效果 另外本論文也替相異雙重量子井與量子點雷射二極體的高速直接調變進行純理論模擬,探討雙重量子井與量子點中的直接調變。 | zh_TW |
| dc.description.abstract | The thesis is focused on the investigation on the characteristics and applications of InAs quantum-dot laser diodes. In quantum-dot laser diodes, carrier capture that is limited by phonon bottleneck effect has significant influence on the application of electro-optical devices. In order to obtain more microscopic information about carrier dynamics, in this thesis, many phenomena are explored such as the electro-luminescence spectrum at variant temperatures, carrier capture, phonon bottleneck and consequential non-equilibrium Fermi-Dirac distribution. The above phenomena can give us microscopic information such as Auger recombination and electron-phonon scattering. By curve fitting, the main reason of nonradiative recombination can be proved as electron-LA phonon scattering, and carrier capture as electron-LO phonon scattering which has evident influence to optical gain spectrum in InAs quantum dot. In quantum dots, carrier scattering is much more limited than in bulk. In order to model the influence of size distribution to gain spectrum, “energy” distribution Gaussian functions are usually adopted. According to the experimental events, “size” Gaussian distribution functions are proposed to achieve better fittings.
Furthermore, the simulations of high speed modulation in nonidentical quantum wells and quantum dot laser diodes are also available in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:12:53Z (GMT). No. of bitstreams: 1 ntu-95-R92941008-1.pdf: 1221639 bytes, checksum: b30793fced5ef0b9b279820b0281c762 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
第一章.簡介…………………………………………………1 1-1 奈米結構與量子點………………………………1 1-2 量子點雷射的應用………………………………5 1-3 論文章節架構……………………………………5 第二章.量子點的基本性質…………………………………9 2-1 量子點的製程……………………………………9 2-2 量子點的尺寸與增益…………………………13 2-2-1 量子點的尺寸分布 …………………………13 2-2-2 量子點的尺寸與能階分布 …………………15 2-2-3 增益與尺寸分布的關係 ……………………15 2-3 聲子瓶頸與能量動量守衡………………………17 2-4 量子點聲子散射與元件特性……………………20 2-4-1 量子點臨界電流……………………………20 2-4-2 量子點頻譜直流狀況之頻寬 ………………21 2-4-3 量子點交流直接調變之頻寬 ………………21 2-5 量子點雷射的應用與其突破的契機……………22 第三章.電子-聲子散射率………………………………25 3-1 聲子的運動方程式 ……………………………26 3-2 極化場,離子晶體與聲子的互動 ……………30 3-3 聲子的量子力學模型 …………………………34 3-4 時變微擾理論 …………………………………36 3-5 週期性固體中的聲子的能量運算符 …………39 3-5-1 音聲子……………………………………39 3-5-2 光聲子……………………………………44 3-6 散射矩陣元素與聲子散射率 …………………46 3-6-1 音聲子散射 ………………………………47 3-6-2 光聲子散射 ………………………………48 3-6-3 總結 ……………………………………49 第四章.非平衡態費米狄拉克分布與量子點增益.51 4-1 非平衡態費米狄拉克分布…………………53 4-1-1 低注入電流與單一量子態 ……………53 4-1-2 高注入電流與多量子態 ………………58 4-2 量子點增益對實驗的擬合…………………64 4-2-1 能量高斯分布增益……………………64 4-2-2 尺寸高斯分布增益……………………68 4-2-3 變溫條件的增益………………………72 第五章.雙重相異量子井中的直接調變 ……………75 5-1 光放大器與直接調變…………………………75 5-2 單一種類量子井與不同種類量子井的調變…77 5-3 雙重相異量子井直流穩態解…………………80 5-4 雙重相異量子井頻率響應…………………81 5-4-1 低電流注入……………………………83 5-4-2 高電流注入……………………………90 第六章.量子點中的直接調變 ………………………95 6-1 穩態直流解……………………………………95 6-1-1 臨界電流………………………………97 6-1-2 臨界條件與發光強度特徵……………99 6-2 頻率響應 ……………………………………107 第七章.總結……………………………………………113 附錄一.精確的量子點能階計算……………………115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 縱向音聲子 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 雷射 | zh_TW |
| dc.subject | 二極體 | zh_TW |
| dc.subject | 砷化銦 | zh_TW |
| dc.subject | 增益 | zh_TW |
| dc.subject | 非平衡 | zh_TW |
| dc.subject | 聲子 | zh_TW |
| dc.subject | 縱向光聲子 | zh_TW |
| dc.subject | 捕捉 | zh_TW |
| dc.subject | 鬆弛 | zh_TW |
| dc.subject | 尺寸 | zh_TW |
| dc.subject | 能量 | zh_TW |
| dc.subject | 高斯 | zh_TW |
| dc.subject | 調變 | zh_TW |
| dc.subject | energy | en |
| dc.subject | Gaussian | en |
| dc.subject | modulation | en |
| dc.subject | quantum dot | en |
| dc.subject | laser | en |
| dc.subject | diode | en |
| dc.subject | InAs | en |
| dc.subject | gain | en |
| dc.subject | non-equilibrium | en |
| dc.subject | phonon | en |
| dc.subject | LA phonon | en |
| dc.subject | LO phonon | en |
| dc.subject | capture | en |
| dc.subject | relaxation | en |
| dc.subject | size | en |
| dc.title | 量子點雷射二極體之特性研究與應用 | zh_TW |
| dc.title | Investigation on the Characteristics and Applications of
Quantum-Dot Laser Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫啟光(Sun, Chi-Kuang),毛明華(Mao, Ming-Hua),吳志毅(Wu, Chih-I),邱奕鵬(Chiou, Yih-Peng) | |
| dc.subject.keyword | 量子點,雷射,二極體,砷化銦,增益,非平衡,聲子,縱向音聲子,縱向光聲子,捕捉,鬆弛,尺寸,能量,高斯,調變, | zh_TW |
| dc.subject.keyword | quantum dot,laser,diode,InAs,gain,non-equilibrium,phonon,LA phonon,LO phonon,capture,relaxation,size,energy,Gaussian,modulation, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-02-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
