Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34388
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭雲明
dc.contributor.authorChi-Tian Chenen
dc.contributor.author陳啟天zh_TW
dc.date.accessioned2021-06-13T06:06:06Z-
dc.date.available2006-07-03
dc.date.copyright2006-07-03
dc.date.issued2006
dc.date.submitted2006-06-13
dc.identifier.citationBartlett, M.S., Gower, J.C., Leslie, P.H., 1960. A comparison of theoretical and empirical results for some stochastic population models. Biometrika 47, 1–11.
Braun, M., 1991. Differential Equations and Their Applications. Springer, New York.
Gause, G.F., 1938. The Struggle For Existence. Dover Publications, INC. Mineola, New York.
Gillman, M., Hails, R., 1997. An Introduction to Ecological Modeling. Blackwell Science, Inc.
Matis, J.H., Kiffe, T.R., 1996. On approximating the moments of the equilibrium distribution of a stochastic logistic model. Biometrics 52, 980–991.
Matis, J.H., Kiffe, T.R., 2000. Stochastic Population Models. Springer, New York.
Matis, J.H., Kiffe, T.R., 2003. A simple saddlepoint approximation for the equilibrium distribution of the stochastic logistic model of population growth. Ecological Modelling 161, 239-248.
Otis, G.W., The Swarming Biology and Population Dynamocs if the Africanized Honey Bee. Ph.D. Diss, Univ. Kansas, Manhatten, KS, 1980
Pielou, E.C., 1977. Mathematical Ecology. Wiley, New York
Pinhero, J.C., Bates, D.M., 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.
Renshaw, E., 1991. Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge.
Renshaw, E., 1998. Saddlepoint approximations for stochastic processes with truncated cumulant generating functions. J. Math. Appl. Med. Biol. 15, 41–52.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34388-
dc.description.abstract邏輯斯生長模式分為決定性模式(deterministic model)與隨機性模式(stochastic model),前者由Verhulst (1938)、Pearl和Reed (1920)提出,後者則由Bartlett等人(1960)提出,廣泛的應用在族群個體數的動態描述。邏輯斯生長模式中的參數,可分為族群內生的出生及死亡率 (intrinsic rates)及族群中的擁擠係數 (crowding coefficients)。Renshaw (1991)針對非重複的族群增長資料提出參數估計的程序,對於重複資料的部分卻毫無著墨,而且其參數估計的過程,似乎有些瑕疵,所得到的參數估計值也並非相當的精確。有鑑於此,文中利用反應曲面法(response surface method),建構出平衡解變異數( )對內生出生率及擁擠係數的反應曲面,然後利用非線性混合模式(nonlinear mixed-effect model, NME model)估計環境容納量(carrying capacity)的變異數,以此估值橫切反應曲面,投射至二維的平面上,藉此方式找出所對應的生長模式參數的估計值。
資料分析針對AHB模擬資料及Gause的草履蟲培養資料,建立高描述能力的反應曲面,NME method精確的估計 ,並描繪出 的投射線段,明顯縮小參數的選擇範圍,至於如何於線段選取適當的參數估計值,有待進一步的研究。
zh_TW
dc.description.abstractThe deterministic logistic model has long been used for modeling the growth of animal population. However, its stochastic counterpart is less known to most of the ecologists partly due to the difficulty in parameter estimation. The estimation method given by Renshaw (1991) was rough and did not take into consideration of repeated measurement data. In this research, we propose an alternative to the estimation of the four parameters of stochastic logistic model.
Our approach includes two major steps. First part of our estimation method is to construct a relationship between the variance of quasi-equilibrium distribution and four parameters which are denoted by a1, a2, b1 and b2. The a’s are intrinsic parameters for birth and death, respectively; the b’s are so-called crowding coefficients. We fit a second-order response surface function of variances σ2 on various probable values of parameters (a1, b1) and denote the function by σ2 = f (a1, b1). Secondly, we employ the method of nonlinear mixed-effects (NME) model to the real growth data usually collected in laboratory or field by scientists. The carrying capacity K of a stochastic logistic model is viewed as a normal random variable whose mean and variance can be estimated by NME method. The variance estimated by this method is far more precise than that obtained by Renshaw’s way of estimation. By plugging the variance estimate into the previously constructed response surface function, we may ‘calibrate’ the possible values of (a1, b1) in a confined interval. We can proceed further by incorporate the mean estimate = (a1-a2)/ (b1+b2) and other source of information such as probable skewness to determine a reasonable range of parameter estimates.
Six examples are used to illustrate and justified the newly proposed approach; they are from renowned authors such as Gause (1938), Pielou (1977), Renshaw (1991) and Matis et al (1996). Interesting results reveal that parameter estimates found by previous authors are all in the confined intervals obtained from our method.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:06:06Z (GMT). No. of bitstreams: 1
ntu-95-R92621206-1.pdf: 4591421 bytes, checksum: 73110cb46e6ff3c31998775ef1c010dd (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
1 緒論 1
1.1 前言 1
1.2 動機與目的 2
2 族群生長模式 3
2.1 指數生長模式 3
2.2 邏輯斯生長模式 4
2.2.1 決定性模式 5
2.2.2 出生死亡模式 7
2.2.3 隨機性模式 7
3 參數估計的建立 12
3.1 ai,bi與μ,σ,κ的相對關係 12
3.1.1 非洲化蜜蜂模式 12
3.1.2 a1,b1與σ相互關係 13
3.2 反應曲面法與等高線圖 14
3.2.1 估計概念 15
3.2.2 實例驗證 15
AHB model 15
Pielou’s example 17
Renshaw’s examples 19
3.3 非線性混合效應模式 22
3.3.1 AHB模擬程序 23
3.3.2 NME model 24
4 試驗與分析結果 27
4.1 試驗介紹 27
4.2 資料分析 29
4.3 分析結果 29
5 討論 33
參考文獻 35
A 附錄 36
A.1 族群動態之分析資料 36
A.2 R計算程式 44
A.2.1 準平衡機率分布 44
A.2.2 反應曲面與等高線圖的建構 46
A.2.3 橫切反應曲面投射至二維平面 49
A.2.4 AHB model模擬程序 52
A.2.5 NME method 估計 54
dc.language.isozh-TW
dc.title邏輯斯族群動態機率模式參數的估計zh_TW
dc.titleThe estimate of parameters of
logistic population dynamic probability model
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊隆,蘇秀媛,歐尚靈,歐益昌
dc.subject.keyword邏輯斯生長模式,環境容納量,內生出生及死亡率,擁擠係數,反應曲面法,非線性混合模式,zh_TW
dc.subject.keyworddeterministic logistic model,stochastic logistic model,quasi-equilibrium distribution,intrinsic parameters for birth and death,crowding coefficients,nonlinear mixed-effects (NME) model,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2006-06-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
4.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved