請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34384完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Bing-Kuan Lin | en |
| dc.contributor.author | 林秉寬 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:05:54Z | - |
| dc.date.available | 2011-08-16 | |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | [1] Goldschlager and Goldman, Principles of Clinical Electrocardiography 13/e Appleton and Lange, Chinese edition by Yi Hsien Publishing Co., Ltd, 1996.
[2] D. M. Mirvis, Body Surface Electrocardiographic Mapping, Boston/Dordrecht, Kluwer Academic Publishers, 1988. [3] Athanasios Papoulis, Probability Random Variables and Stochastic Process, 3rd edition, New York: McGraw-Hill, pp. 412-416, 1991. [4] Charles W. Therrien, Discrete Random Signal and Statistical. Prentice Hall Signal Processing Series, Englewood Cliffs, pp. 174-181, April 1992. [5] R. D. Dony, Karhunen-Loeve Transform: The Transform and Data Compression Handbook, Ed. K. R. Rao and P.C. Yip, Boca Raton, Raton, CRC Press LLC, 2001. [6] Jaakko Malmivuo and Robert Plonsey, Bioelectromagnetism, New York Oxford, pp.277-288, 1995. [7] Cristin Bigan, 'Signal Dependent KL Transform for ECG Signals Representation' Acta Universitatis Apulensis, ACTA 2, 2001. [8] F. Kornreich; R. S. MacLeod; R. L. Lux, 'Supplemented standard 12-lead electrocardiogram for optimal diagnosis and reconstruction of significant body surface map patterns,' Journal of Electrocardiology, vol. 41, pp. 251-256, May. 2008. [9] I. B. A. Menown; R. S. H. W. Patterson; G. MacKenzie; A. A. J. Adgey, 'Body-surface map models for early diagnosis of acute myocardial infarction,' Journal of Electrocardiology, vol. 31, pp. 180-188, 1998. [10] M. Carlsson; H. Arheden; C. B. Higgins; M. Saeed, 'Magnetic resonance imaging as a potential gold standard for infarct quantification,' Journal of Electrocardiology, vol. 41, pp. 614-620, May. 2008. [11] P. Kligfield, 'Electrocardiography in the 21st century: The Pierre Rijlant Lecture, 2006,' Journal of Electrocardiology, vol. 40, pp. S3-S6, January. 2007. [12] Kornreich F. and Montague T.J. et al, 'Qualitative and Quantitative Analysis of Characteristic Body Surface Potential Map Features in Anterior and Inferior Myocardial Infarction,' Am J Cardiol, 60(16):1230-8, Dec 1, 1987. [13] Umetani K.; Okamoto Y. et al, 'Body surface Laplacian mapping in patients with left or right ventricular bundle branch block,' Pacing Clin Electrophysiol, 21(11 Pt 1):2043-54, Nov, 1998. [14] Sarah D.; Blumenschein M.D. et al, 'Genesis of Body Surface Potentials in Varying Types of Right Ventricular Hypertrophy,' Circulation, 38(5):917-32. Nov, 1968 [15] De Ambroggi L; Santambrogio C., 'Clinical use of body surface potential mapping in cardiac arrhythmias,' Physiol Res, 42(2):137-40, 1993. [16] Baule G.M; McFee R., 'Detection of the magnetic field of the heart,' American Heart Journal, 66:95-6, 1963. [17] Cohen D., 'Magnetic fields around the torso: production by electrical activity of the human heart, ' Science, 156:652-4, 1967. [18] Zimmerman J.E.; Theine P.; Harding J.T., 'Design and operation of stable RF-biased superconducting point-contact quantum devices, etc.' Journal of Applied Physics, 41:1572-1580, 1970. [19] C. C. Wu; H. C. Huang et al, 'Two-Dimensional Propagation of Magnetocardiac T Wave Signals for Characterizing Myocardial Ischemia,' Appl. Phys. Lett., 92:194104, 2008. [20] Einthoven W.; Fahr G.; Waart A., 'On the direction and manifest size of the variations of potential in the human heart and on the influence of the position of the heart on the form of the electrocardiogram,' translated by Hoff H. E. and Sekelj P., American Heart Journal, 40:163, 1950. [21] Koch H., 'Recent advances in magnetocardiography,' Journal of Electrocardiology, 37: 117-122, 2004. [22] E. Frank, 'An Accurate, Clinically Practical System For Spatial Vectorcardiography,' Circulation, 13, pp.737-749, 1956. [23] E. Frank and C. F. Kay, 'Frontal plane studies of Homogeneous Torso Models,' Circulation, vol. 9, pp. 724-740, 1954. [24] Mann H., 'A Method for Analyzing the Electrocardiogram.' Archives of Internal Medicine, 25: 283-94, 1920. [25] Frank E., 'The image surface of a homogenous torso.' American Heart Journal; 47, 757-68, 1954. [26] Frank E., 'General theory of heart-vector projection.' Circulation Research, 2: 258-70, 1954. [27] Akansu, A.N. and Poluri, R., 'Design and Performance of Spread Spectrum Karhunen-Loeve Transform for Direct Sequence CDMA Communications,' Signal Processing Letters, IEEE , vol.14, no.12, pp.900-903, Dec. 2007. [28] Olmos S. and Millan M. et al, 'ECG data compression with the Karhunen-Loeve transform,' Computers in Cardiology, pp.253-256, 8-11 Sep 1996. [29] Olmos S. and Laguna, P., 'Multi-lead ECG data compression with orthogonal expansions: KLT and wavelet packets,' Computers in Cardiology, pp.539-542, 1999. [30] Cetin A.E.; Koymen H.; Aydin M.C., 'Multichannel ECG data compression by multirate signal processing and transform domain coding techniques,' Biomedical Engineering, IEEE Transactions on , vol.40, no.5, pp.495-499, May 1993. [31] Wilson F.N.; Johnston F.D.; Macleod A.G.; Barker P.S., 'Electrocardiograms that represent the potential variations of a single electrode.' Am. Heart J. 9: 447-71, 1934. [32] Miyamoto N. and Shimizu Y. et al, 'The absolute voltage and the lead vector of Wilson's central terminal.' Jpn Heart J., 37(2):203-14, Mar. 1996. [33] J. A. Van Alste; T. S. Schilder, 'Removal of Base-Line Wander and Power-Line Interference from the ECG by an Efficient FIR Filter with a Reduced Number of Taps,' IEEE Transactions On Biomedical Engineering, Vol. BME-32, NO. 12, Dec. 1985. [34] Yong Lian and Jiang Hong Yu, 'The Reduction of Noises in ECG Signal Using a Frequency Response Masking Based FIR Filter,' IEEE International Workshop on Biomedical Circuits & Systems, 2004. [35] Moore, E. H., 'On the reciprocal of the general algebraic matrix,' Bulletin of the American Mathematical Society, 26: 394–395,1920. [36] Bjerhammar; Arne, 'Application of calculus of matrices to method of least squares; with special references to geodetic calculations', Trans. Roy. Inst. Tech. Stockholm 49, 1951. [37] Penrose and Roger, 'A generalized inverse for matrices,' Proceedings of the Cambridge Philosophical Society, 51: 406–413, 1955. [38] Penrose and Roger, 'On Best Approximate solution of Linear Matrix Equations,' Proceedings of the Cambridge Philosophical Society, 52: 17–19, 1956. [39] Savitzky A.; Golay, M.J.E., 'Smoothing and Differentiation of Data by Simplified Least Squares Procedures,' Analytical Chemistry 36 (8): 1627–1639, 1964. [40] Manfred U. A. Bromba; Horst Ziegler, 'Application Hints for Savitzky-Golay Digital Smoothing Filters,' Anal. Chem. 53, 1583-1586, 1981. [41] Huynh-Thu Q. Ghanbari M., 'Scope of validity of PSNR in image/video quality assessment,' Electronics Letters 44: 800–801, 2008. [42] Nils Haeck, 'Image Processing Science calculating RMSE and PSNR for color images,' Retrieved 6 , April 2011. [43] Raymond Bond, 'Processing &Visualization of Body Surface Potential Maps' 100 day VIVA report and presentation, Feb 24, 2009. [44] Heartscape Technologies, Inc., 'http://www.heartscape.com/index.html', 2010. [45] Selbst Erstellt, 'Priniple of ECG formation,' from http://zh.wikipedia.org/wiki/-File:ECG_principle_slow.gif, Nov 28, 2005. [46] http://en.wikipedia.org/wiki/Principal_component_analysis, 19 May 2011 [47] Jolliffe I.T., Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002. [48] MoodyGroove, 'I captured this 12 lead ECG from a friend of mine during a training class at the fire station.' from http://en.wikipedia.org/wiki/- File:12leadECG.jpg, Jan 24, 2007. [49] Madhero88, 'Diagram showing the connection of ECG leads' from http://zh.wikipedia.org/wiki/-File:ECGcolor.svg, May 3, 2009. [50] South Park Digital Studios LLC, http://www.southparkstudios.com/ , 2011. [51] BioMag Laboratory, HUSLAB, Helsinki University Central Hospital, http://www.biomag.hus.fi/. [52] 丁建元、鄭智銘, '心電圖原理簡介', 老人福祉科技研發中心 , April 3, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34384 | - |
| dc.description.abstract | 心電圖(Electrocardiography)是利用圖形的方式,將身體表面的電位變化紀錄下來,用以描述心臟搏動的變化,為醫學上用於判斷心臟狀態時不可或缺的依據。相較於傳統的十二導程心電圖,另一種方式,是以量測多處體表的電位來觀測心臟狀態,由於近幾年硬體設備的進步,以各種不同的測量方式來得到多導程的心電圖,陸續提出相關的研究,提供更多的醫療價值。以空間中的向量為基礎,解釋心臟電生理的傳導稱為向量心電圖(Vectorcardiography),其理論將心臟假想成三維空間中的雙極發電器(Dipole Generator),於體表不同的位置觀察其大小及方向的變化,即可記錄成心電圖,依據此假說,建立了現今的向量心電圖學,本研究以向量心電圖為理論基礎,以KL轉換(Karhunen-Loeve Transform)演算法來找出心電訊號的最佳基底進行多導程心電圖的重建,不同於向量心電圖理論使用的空間座標軸,KL轉換可以找出心電訊號的最佳基底,做為表示雙極發電器假說的基底,該演算法已廣泛使用於訊號或圖片的壓縮及傳輸,利用最小的均方差(Mean Square Error)求得基底,並稱為最佳化基底;在此利用其特性來做重建的工作,本研究應用於心電圖的多導程重建上,利用在身體表面少數的固定導程,計算出基底後,可以重建出任意位置的心電訊號,並藉由同步重建多個位置的訊號,達到多導程心電圖的目的,論文最後列上重建的操作流程供使用者參考,讓此重建多導程心電圖的研究,更容易理解與實作。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:05:54Z (GMT). No. of bitstreams: 1 ntu-100-R98548057-1.pdf: 3172901 bytes, checksum: 57743e6b3c5165c4e3ea3acbe62488f0 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 ...................................................................................................................................i
中文摘要 .......................................................................................................................... ii ABSTRACT .................................................................................................................... iii CONTENTS .....................................................................................................................iv LIST OF FIGURES ........................................................................................................ vii LIST OF TABLES ............................................................................................................ix Chapter 1 緒論............................................................................................................ 1 1.1 研究動機與目的 ............................................................................................ 1 1.2 傳統心電圖到多導程心電圖 ........................................................................ 2 1.2.1 體表面電位圖(Body Surface Potential Map) ....................................... 4 1.2.2 心磁圖(Magnetocardiography) ............................................................. 5 1.2.3 心向量投影(Heart-Vector Projection) .................................................. 6 1.3 論文架構 ........................................................................................................ 7 Chapter 2 多導程心電圖重建模型與理論 ............................................................... 8 2.1 心臟的電位傳導 ............................................................................................ 8 2.2 向量心電圖(Vectorcardiography)模型 .......................................................... 9 2.2.1 FRANK 模型與Einthoven 三角形 ................................................... 10 2.2.2 心向量與位置向量的表示法 ............................................................. 12 2.2.3 位置向量與電位之關係 ..................................................................... 12 2.3 KL 轉換(Karhunen-Loeve Transform) ........................................................ 13 2.3.1 基底變換 ............................................................................................. 13 2.3.2 KL 轉換方法與步驟 .......................................................................... 14 2.4 Moore-Penrose pseudoinverse ...................................................................... 17 Chapter 3 重建模型之架構與其方法 ..................................................................... 19 3.1 心電圖數據的量測 ...................................................................................... 19 3.1.1 單極(Unipolar)導程與Wilson Central Terminal ............................... 19 3.1.2 心電圖訊號濾波器 ............................................................................. 20 3.2 重建模型之校正階段 .................................................................................. 22 3.2.1 固定導程與重建導程 ......................................................................... 22 3.2.2 取得最佳化基底 ................................................................................. 23 3.2.3 相關性係數的求得 ............................................................................. 23 3.3 重建模型之重建階段 .................................................................................. 24 3.3.1 以Moore-Penrose pseudoinverse 重建基底 ...................................... 24 3.3.2 訊號輸出與Savitzky-Golay filter ...................................................... 25 Chapter 4 最佳化分析與討論 ................................................................................. 27 4.1 參數最佳化 .................................................................................................. 27 4.1.1 PSNR (Peak Signal to Noise Ratio) .................................................... 27 4.1.2 相關矩陣與共變異數矩陣 ................................................................. 28 4.1.3 基底數量選擇 ..................................................................................... 28 4.1.4 直流訊號飄移 ..................................................................................... 30 4.1.5 Savitzky-Golay filter 參數最佳化 ...................................................... 30 4.1.6 係數取得訓練集 (Training Set)時間長度 ........................................ 32 4.1.7 重建區段(Reconstruct Segment)時間長度 ........................................ 33 4.1.8 重建模型的即時性(Real Time) .......................................................... 34 4.1.9 重建模型的時效性(Long-Term Use) ................................................. 35 4.1.10 相關性係數的泛用性 ......................................................................... 36 4.2 重建模型誤差探討 ...................................................................................... 37 4.2.1 基底選擇之誤差 ................................................................................. 37 4.2.2 以Moore-Penrose pseudoinverse 重建基底之誤差 .......................... 39 4.2.3 增加固定導程數目 ............................................................................. 39 4.3 結果討論與範例 .......................................................................................... 41 Chapter 5 結論.......................................................................................................... 45 5.1 重建的標準作業流程 .................................................................................. 45 5.1.1 校正階段 ............................................................................................. 45 5.1.2 重建階段 ............................................................................................. 46 REFERENCE .................................................................................................................. 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | KL轉換 | zh_TW |
| dc.subject | 多導程心電圖 | zh_TW |
| dc.subject | VCG | zh_TW |
| dc.subject | 重建 | zh_TW |
| dc.subject | Karhunen-Loeve Transform | en |
| dc.subject | Reconstruct | en |
| dc.subject | VCG | en |
| dc.subject | multi-lead ECG | en |
| dc.title | 以Karhunen-Loeve轉換之最佳基底重建多導程心電圖 | zh_TW |
| dc.title | Reconstructing multi-lead ECG with optimal basis chosen by Using Karhunen-Loeve Transform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳造中(Chau-Chung Wu),蕭子健(Tzu-Chien Hsiao) | |
| dc.subject.keyword | 多導程心電圖,VCG,KL轉換,重建, | zh_TW |
| dc.subject.keyword | multi-lead ECG,VCG,Karhunen-Loeve Transform,Reconstruct, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
