Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34356
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉
dc.contributor.authorJenn-Feng Lien
dc.contributor.author李劍鋒zh_TW
dc.date.accessioned2021-06-13T06:04:35Z-
dc.date.available2007-07-12
dc.date.copyright2006-07-12
dc.date.issued2006
dc.date.submitted2006-06-16
dc.identifier.citationAllen, M. P. and Tildsley, D. J. (1987), Computer Simulations of Liquids, Oxford Science Publication, Oxford, UK.
Ansell, G. C. and Dickinson, E. (1986), “Sediment Formation by Brownian Dynamics Simulation: Effect of Colloidal and Hydrodynamic Interactions on the Sediment Structure,” J. Chem. Phys., 85(7), 4079-4086.
Ansell, G. C. and Dickinson, E. (1987), “Brownian-Dynamics Simulation of the Formation of Colloidal Aggregate and Sediment Structure,” Faraday Discuss. Chem. Soc., 83, 167-177.
Ballato, J. and James, A. (1999), “A Ceramic Photonic Crystal Temperature Sensor,” J. Am. Ceram. Soc., 82 (8), 2273-2275.
Beals, M., Gross, L. and Harrel, S. (2000), “Cell Aggregation and Sphere Packing,” http://www.tiem.utk.edu/%7Egross/bioed/webmodules/spherepacking.htm
Bergström, L. (1997), “Hamaker Constants of Inorganic Materials,” Advances in Colloid and Interface Science, 70, 125-169.
Braun, P. V., Zehner, R. W., White, C. A., Weldon, M. K., Kloc, C., Patel, S. and Wiltzius, P. (2001), “Epitaxial Growth of High Dielectric Contrast Three-Dimensional Photonic Crystals,” Adv. Mater., 13(10), 721-724.
Carr, B., Diaper, T. and Barrett, E. (2005), “NanoParticle Tracking Analysis – The Halo™ system,” Particulate Systems Analysis 2005, Royal Society of Chemistry, Stratford-upon-Avon, UK. (http://www.nanosight.co.uk)
Caruso, F. and Möhwald, H. (1999), “Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids, ” Langmuir, 15, 8276-8281.
Cundall, P. A. (1971), 'A Computer Model for Simulating Progressive Large-Scale Movements in Blocky Rrock System,' Proc. of Symp. Int. Soc. Rock. Mech., Ⅱ-8, Nancy, Lorrainz, France.
Chen, S. –H. (2004), Visual Programming Toolkit for Particle Visualization, Master Thesis, Department of Civil Engineering, National Taiwan University, Taiwan. (in Chinese)
Chen, C-W., Chen, M. Q., Serizawa, T. and Akashi, M. (1998), “In-Situ Formation of Silver Nanoparticles on Poly(N-isopropylacrylamide)-Coated Polystyrene Microspheres,” Adv. Mater, 10, 1122-1126.
Chen, C-W., Serizawa, T. and Akashi, M. (1999), “Preparation of Platinum Colloids on Polystyrene Nanospheres and Their Catalytic Properties in Hydrogenation,” Chem. Mater., 11, 1381-1389.
Chen, T. -W. and Wei, W. J. (2001), “Synthesis and Characterization of Mono-sized SiO2 Ceramic Particles in Meso-structure,” Ceram. Nanomat’ls & Nanotech., Ceram. Trans., 137, 23-31, Am. Ceram. Soc.
Chen, Y. –H. (2005), Preparation of Nano-Al2O3/Ni Core-Shell Structured Composite Powder, Master Thesis, National Taipei University of Technology, Taiwan.
Derjaguin, B. V. (1934), “Untersuchungen uber die Reibung und Adhasion, IV: Theorie des Anhaftens kleiner Teilchen,” Kolloid Zeitschrift, 69(2), 155-164.
Derjaguin, B. V. and Landau, L. (1941), “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes,” Actz. Physicochim., 14, 663-662.
Elimelech M., Gregory J., Jia X. and Williams R. A. (1995), Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Buterworth- Heinemann Ltd., Oxford, UK.
Ermak, D. L. and Yeh, Y. (1974),“Equilibrium Electrostatic Effects on the Behavior of Polyions in Solution: Polyion-Mobile Ion Interaction”, Chem. Phys. Lett. 2(24), 243-248.
Ermak, D. L. and Buckholz, H. (1979), “Numerical Integration of the Langevin Equation: Monte Carlo Simulation,” J. Comput. Phys., 35, 169-182.
Frens, G. and Overbeek, J. Th. G. (1972), “Repetition and the Theory of Electrocratic Colloids,” J. Colloid Interface Sci., 38, 367-387.
Fuch, N. (1934), “Über die Stabilität und Aufladung der Aerosole,” Z. Physic, 89, 736-743.
Haile, J. M. (1992), Molecular Dynamics Simulation, John Wiley & Sons. Inc., New York, USA.
Hamaker, H. C. (1937), “The London-van der Waals Attraction between Spherical Particles,” Phisica A., 4, 1058-1072.
Hayward, R. C., Saville, D. A. and Aksay, I. A (2000), “Electrophoretic Assembly of Colloidal crystals with Optically tunable Micropatterns,” Letters to Nature, Vol. 404, 2, 56-59.
Hiemenz, P. C. (1997), Principles of Colloid and Surface Chemistry, 3rd Edition, Marcel Dekker, New York.
Hong, C. W. (1997), “New Concept for Simulating Particle Packing in Colloidal Forming Processes,” J. Am. Ceram. Soc., 80(10), 2517-2524.
Hong, C. W. (1998), “From Long-Range Interaction to Solid-Body Contact Between Colloidal Surfaces During Forming,” J. Euro. Ceram. Soc., 18(14), 2159-2167.
Horn, R. G. (1990), “Surface Forces and Their Action in Ceramic Materials,” J. Am. Ceram. Soc., 73(5), 1117-1135.
Hunter, R. J. (2001), Foundations of Colloid Science, 2nd Edition, Oxford University Press.
Ives, K. J. and Gregory, J. (1966), “Surface Forces in Filtration,” Proceedings of the Society for Water Treatment and Examination, 15, 93-116.
Joannopoulos, J., Meade, R. D. and Winn, J. N. (1995), Photonic Crystals: Molding The Flow Of Light, Princeton University Press.
Johnson, S. G. and Joannopoulos, J. D. (2000), “Three-Dimensionally Periodic Dielectric Layered Structure with Omnidirectional Photonic Band Gap,” Appl. Phys. Lett., 77, 3490–3492.
Kaltenpoth, G., Himmelhaus, M., Slansky, L., Caruso, F. and Grunze, M. (2003), 'Conductive Core-Shell Particles: An Approach to Self-Assembled Mesoscopic Wires,' Adv. Mater., 15, No. 13, 1113-1118.
Kobayashi, Y., Salgueiriño-Maceira, V. and Liz-Marzán, L. M. (2001),“Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating,” Chem. Mater., 13, 1630-1633.
Lewis, J. A. (2000), “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83(10), 2341-2359.
Li, J. -F., Yu, W. -H., Chen, C. -S. and . Wei, W. -C. J. (2003), “Modeling Nanosized Colloidal Particle Interactions with Brownian Dynamics Using Discrete Element Method,” Nanotech 2003, 566-569, February, San Francisco, USA.
Lifshitz, E. M. (1956), “Theory of Molecular Attractive Forces,” Soviet Phys, JETP, 2, 73-83.
Liz-Marzan, L. M., Giersig, M., Mulvaney, P. (1996), “Synthesis of nanosized gold-silica core-shell particles, Langmuir, 12(18), 4329-4335.
Löwen, H. (2000), “Fun with Hard Spheres,” Lecture Notes in Physics 554, K. R. Mecke and D. Stoyan (Eds.), 295-331.
Löwen, H. (2001), “Colloidal Soft Matter under External Control,” J. Phys. Condens. Matter, 13, R415-R432.
Lyklema, J. (1980), “Colloid Stability as a Dynamic Phenomenon,” Pure Appl. Chem., 52, 1221-1227.
Markus, H. (1999), Brownian Dynamics Simulation of Stable and of Coagulating Colloids in Aqueous Suspension, Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich.
Masuda, Y., Tomimoto, K. and Koumoto, K. (2003), “Two-Dimensional Self-Assembly of Spherical Particles Using a Liquid Mold and Its Drying Process,” Langmuir, 19(13), 5179-5183.
Muller, F., Birner, A., Gosele, U., Lehmann, V., Ottow, S., Foll, H. (2000), “Structuring of Macroporous Silicon for Applications as Photonic Crystals,” J. Porous Mater., 7, 201-204.
Norris, D. J., Arlinghaus, E. G., Meng and L. L., (2004),“Opaline Photonic Crystals: How Does Self-Assembly Work?,” Adv. Mater., 16 (16), 1393-1399.
Ohmori, M. and Matijevic, E. (1992), “Preparation and Properties of Uniform Coated Colloidal Particles: Silica on Hematite,” J. Colloid and Interface Sci., 160(2), 288-292.
Prive, D. C. and Russel, W. B. (1988), “Simplified Predictions of Hamaker Constants for Lifshitz Theory,” J. Colloid and Interface Sci., 125, 1-3.
Rack, P. D., Namam, A., Holloway, P. H., Sun, S.-S. and Tuenge, R. T. (1996), “Materials Used in Electroluminescent Display,” MRS Bulletin, March, 49-58.
Reed, J. S. (1995), Principles of Ceramic Processing 2nd ed., John Wiley & Sons, NY, USA.
Reerink, H. and Overbeek, J. Th. G. (1954), “The Rate of Coagulation as a Measure of the Stability of Silver Iodide Sols,” Discuss. Faraday Soc., 18, 74-84.
Ristenpart, W. D., Aksay, I. A. and Saville, D. A. (2003), “Electrically Guided Assembly of Planar Superlattices in Binary Colloidal Suspensions,” Physical Review Letters, Vol. 90, No. 12, 128303.1-128303.4.
Rühle, M., Dosch, H., Mittemeijer, E. J. and Van de Voorde, M. H. (2001), European White Book on Fundamental Research in Materials Science, Max-Planck-Institut für Metallforschung, Stuttgart.
Russel, W. B., Saville, D. A. and Schowalter, W. R. (1989), Colloidal Dispersions, Cambridge University Press.
Sarkar, P., De, D., Yamashita, K., Nicholson, P. S. and Umegaki, T. (2000), “Mimicking Nanometer Atomic Processes on a Micrometer Scale via Electrophoretic Deposition,” J. Am. Ceram. Soc., 83(6), 1399-1401.
Shaw, D. J. (1991), Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann Ltd., Oxford. UK.
Szabo, B. and Babuska, I. (1991), Finite Element Analysis, Wiley-Interscience, New York, USA.
Trau, M., Saville, D. A. and Aksay, I. A. (1996), “Field-Induced Layering of Colloidal Crystals,” Science, 272(5262), 706-709.
van Gunsteren, W. F. and Berendsen, H. J. C. (1982), “Algorithms for Brownian dynamics”, Mol. Phys. 45, 637-647.
van Blaaderen, A. (2004), “Colloids under External Control,” MRS Bulletin, February, 85-90.
Van Blaaderen, A., Ruel, R. and Wiltzius, P. (1997), “Template-Directed Colloidal Crystallization”, Nature, 385, 321-324.
Verwey, E. J. W. and Overbeek, J. Th. G. (1948), Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.
Vlasov, Y. A., Bo, X. Z., Sturm, J. C. and Norris, D. J. (2001), “On-Chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Letters to Nature, Vol. 414, 15, 289-293.
Wang, G. and Nicholson, P. S. (2001), “Heterocoagulation in Ionically Stabilized Mixed-Oxide Colloidal Dispersions in Ethanol,”J. Am. Ceram. Soc., 84 [6], 1250-1256.
Wang, S. –C (2001), Processing and Characterization of Electro-Plated Ni-Based Nanosized SiC Particle Composites, Ph.D. dissertation, Department of Materials Science and Engineering, National Taiwan University, Taiwan.
Xia, Y., Gates, B. and Park, S. H. (1999), “Fabrication of Three-Dimensional Photonic Crystals for use in the Spectral Region from Ultraviolet to Near-Infrared,” J. lightwave technology, Vol. 17, no. 11. Nov.
Yang, C. –T (2004), A Versatile Discrete Objects Simulation System, Ph.D. dissertation , Department of Civil Engineering, National Taiwan University, Taiwan.
Yang, C. T. and Hsieh, S. H. (2004), “An Object-Oriented Framework for Versatile Discrete Objects Simulation Using Design Patterns,” Computational Mechanics, Vol.36, No.2, 85-99.
Yang, C. T., Hsieh, S. H. and Lin, L. S. (2004), “Design of an XML-based Markup Language for Discrete Object Simulations,” Bulletin of the College of Engineering, National Taiwan University, No. 92, 89-103.
Yu, W. –H (2002), Using Discrete Element Method to Simulate Colloidal Particle Interactions and Brownian Motion, Master thesis, Department of Civil Engineering, National Taiwan University, Taiwan. (in Chniese)
Zienkiewicz, O. C. and Taylor, R. L. (2000), Finite Element Method: Volume 1, The Basis, 5th edition, Butterworth-Heinemann, UK.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34356-
dc.description.abstract膠體粒子(colloid)均勻分散於某種介質中就是所謂的膠體分散系(colloidal dispersion),應用膠體系統於陶瓷製程已有數百萬年的歷史,而在各種陶瓷製程中,本研究主要著眼於光閘晶體(photonic bandgap crystals, 簡稱PBG crystals)的相關製程,其中,如何維持膠體系統的穩定則是最關鍵的課題。
應用電腦模擬來研究膠體系統的穩定是一個相當有趣的方式,文獻中可以找到不少膠體系統的模擬方法,然而,至今尚未有一個較具代表性的模擬工具,要取得程式碼來根據我們的應用需求加以修改也相當困難。因此,本研究的第一個目標就是開發一個研究膠體粒子動態行為的數值模擬工具。在本研究中,我們根據布朗動力學(Brownian dynamics)的Langevin Equation,整合粒間作用力(主要為DLVO理論)、布朗運動(Brownian motion)和系統力場(field forces),開發了一個物件導向的離散元素模擬程式。程式開發中,解決了模擬過程中的幾何衝突、聚結的形成與移動、碰撞效率等課題,模擬結果並與文獻中的模擬案例以及smoluchowski的聚結理論相比較,來驗證程式的適用性。
本研究的第二個目標是利用上述膠體粒子模擬程式來模擬光閘晶體相關的製程,從觀察模擬過程中的微結構變化來掌握合成光閘晶體的關鍵因素,並以異質聚結(heterogeneous aggregation)、光閘晶體的堆疊(packing of PBG crystals)、利用樣板的自我組裝(template-directed self-assembly)為研究案例。
在異質聚結的案例研究中,對於奈米到次微米等級的膠體粒子,受到布朗運動與DLVO作用的交互影響有深入的探討,從而推論布朗運動對於奈米等級的膠體粒子有顯著的重要性。另外,從對異質聚結製程的模擬,我們也提供合成SiO2/TiO2核殼結構(core/shell structure)複合粒子的重要因素。
在光閘晶體的堆疊案例研究中,我們觀察SiO2顆粒在水中從沉降到聚結成形的過程。藉由觀察堆疊過程中顆粒排列微結構與RDF分析的變化,可以發現當沉積體形成後,顆粒間仍不斷地調整顆粒與顆粒間排列的位置;而當顆粒間的表面互斥能量較大時,可以形成區域性的整齊排列。
在利用樣板的自我組裝的案例研究中,利用簡單的幾何分析,搭配1000顆SiO2取向附生(epitaxy)的模擬驗證,我們認為用來合成三維光閘晶體的樣板,其最佳排列模式為具有2.45r間距的方形排列。
總和而言,利用電腦模擬配合實驗觀察的研究方法,十分適合膠體系統製程的研究,後續將可期待更廣泛的應用。
zh_TW
dc.description.abstractA colloidal dispersion is a system in which the dispersed particles through the medium are much larger than the molecules of the medium. Ceramic manufacturing has been processed by means of the colloidal system for several millennia. The colloidal system applications in this study focus on photonic bandgap (PBG) crystal related processes where the maintenance of the stability is critical.
Computer simulation offers a potential means to study colloidal stability. Several simulation methods have been presented in the literature for the colloidal system simulation. However, none of them is eminent and none of the source code is available for further modification to conduct our application cases of interests. Thus, the first objective of this study is to develop a simulation program which can properly mimic the dynamic behaviors of colloids in a finite system. In this study, an Object-Oriented DEM (discrete element method) based Brownian dynamics simulation system is developed to mimic the integrated behavior of colloidal particles in a suspension. The Langevin-type equations of motion are employed in the DEM simulation program to govern the movement of colloidal particles subjected to inter-particle interactions (mainly DLVO interaction), field forces, and the Brownian motion (in diffusive scale). Several techniques are proposed to solve the relating problem during the simulation, including the overlapping of particles, formation of agglomerations, and the collision efficiency. Simulation cases of a centrifugal casting and a rapid Brownian coagulation have been conducted to verify the feasibility of the program. The simulation results agree well with the simulation results reported in the literature and the theoretical predictions of Smoluchowski’s kinetics of coagulation theory.
The second objective is to seek the implications of the recipe for synthesizing the PBG crystals by monitoring transformation during simulation. To this end, three simulation cases were conducted; these include coating PBG particles by heterogeneous aggregation, packing of PBG crystals, and template-directed crystallization of PBG crystals.
For the case of heterogeneous aggregation, intensive studies have been conducted to understand the importance of Brownian motion for colloidal particles in nano and sub-micron scales. The importance of Brownian motion was illustrated when the particle size is in the order of ten nm. The recipes for synthesizing core/shell structures by mean of heterogeneous aggregation were suggested.
For the case of PBG crystal packing, the processes of self-assembly of the silica spheres on the solid substrate were studied. The evolution of the positional order in the process of the assembly was demonstrated by means of snapshots visualization and RDF analysis. We found that particles inside a sediment cake continue adjusting their positions by inter-particle interactions even after the height of the sediment cake has reached a stable condition.
For the case of template-directed crystallization, a simple and heuristic analysis to find the most appropriate template pattern to synthesize well-ordered PBG by colloidal epitaxy was proposed. The analysis was verified by a series of simulations based on a system of 1000 SiO2 particles. The cubic array template provided only one kind of site for the upward layers. A cubic array with lattice spacing of 2.45r was illustrated to be the best designed template for synthesizing the PBG crystals.
In conclusion, we have shown that computer simulation is a proper tool to study the colloidal process, for example, to monitor the transformation from the initial state to the consolidated result. The collaboration of simulations and experiments on studying the colloidal processes have been demonstrated in this study, and we believe that further novel advancing through such venue is expected in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:04:35Z (GMT). No. of bitstreams: 1
ntu-95-D90521011-1.pdf: 9671330 bytes, checksum: 2cbc4057fd1e4f0305bd6d0da1a9a165 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents
誌謝 I
摘要 III
Abstract V
Table of contents VII
List of Figures XI
List of Tables XVII
Chapter 1 Introduction 1
1.1 General 1
1.2 Colloidal domain and computer simulation 3
1.3 PBG colloidal system for applications 6
1.4 Objectives and outlines 7
Chapter 2 Theories and Simulation Methodologies 9
2.1 Introduction 9
2.2 DLVO theory 10
2.2.1 van der Waals forces 11
2.2.2 Electrostatic forces 13
2.2.3 DLVO theory in force field 15
2.3 Very-short-range force and JKR adhesion theory 16
2.4 Brownian motion 18
2.4.1 Random walk of Brownian motion 18
2.4.2 Brownian dynamics simulation 19
2.5 Object-Oriented colloidal particle simulation system 22
2.5.1 Governing equations over separation distance 23
2.5.2 Particle agglomeration 25
2.5.3 Collision efficiency 26
2.5.4 Verification of the simulation program 27
Chapter 3 Modeling Motion and Interaction of Nanosized Bimodal Colloids 35
3.1 Introduction 35
3.2 Brownian motion v.s. DLVO of silica and tinania 38
3.3 Simulation and discussion 53
3.4 Concluding remarks 57
Chapter 4 Simulation of Colloidal Particle Packing for Photonic Bandgap Crystals 59
4.1 Introduction 59
4.2 Experimental 60
4.3 Simulation process 63
4.4 Simulation results and discussion 69
4.5 Concluding remarks 77
Chapter 5 The Simulation on Synthesizing 3D PBG Crystals by Self-assembly with Proper Template 79
5.1 Introduction 79
5.2 Geometrical analysis for optimum template 81
5.3 Simulation and discussion 87
5.4 Concluding remarks 92
Chapter 6 Conclusions 93
6.1 Summary 93
6.2 Future studies 95
Reference 97
Appendix A Object-Oriented Discrete Element Simulation System of Brownian Dynamics 103
A.1 System design 103
A.2 Classes 104
A.3 Simulation parameters 105
A.4 Post processing 107
Appendix B A Tutorial to Estimate
dc.language.isoen
dc.subject異質聚結zh_TW
dc.subject光閘晶體zh_TW
dc.subject堆疊zh_TW
dc.subject離散元素zh_TW
dc.subject自我組裝zh_TW
dc.subject物件導向zh_TW
dc.subject布朗運動zh_TW
dc.subjectLangevin方程式zh_TW
dc.subjectDLVO理論zh_TW
dc.subjectcolloidal epitaxyen
dc.subjectBrownian dynamicsen
dc.subjectObject-Orienteden
dc.subjectDEMen
dc.subjectLangevin equationen
dc.subjectDLVO theoryen
dc.subjectheterogeneous aggregationen
dc.subjectPBG packingen
dc.subjecttemplate-directed self-assemblyen
dc.title以離散元素研究膠體粒子的異質聚結、堆疊與自我組裝zh_TW
dc.titleStudy of Heterogeneous Aggregation, Packing, and Self-Assembly of Colloids using Discrete Elementsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee韋文誠,徐治平,謝尚賢,呂良正,洪居萬
dc.subject.keyword布朗運動,物件導向,離散元素,Langevin方程式,DLVO理論,異質聚結,光閘晶體,堆疊,自我組裝,zh_TW
dc.subject.keywordBrownian dynamics,Object-Oriented,DEM,Langevin equation,DLVO theory,heterogeneous aggregation,PBG packing,template-directed self-assembly,colloidal epitaxy,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2006-06-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
9.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved