Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34277
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙坤茂(Kun-Mao Chao)
dc.contributor.authorYao-Ting Huangen
dc.contributor.author黃耀廷zh_TW
dc.date.accessioned2021-06-13T06:01:02Z-
dc.date.available2006-06-27
dc.date.copyright2006-06-27
dc.date.issued2006
dc.date.submitted2006-06-23
dc.identifier.citation[1] Altshuler, D., Brooks, L.D., Chakravarti, A., Collins, F.S., Daly, M.J., and Donnelly, P. A
haplotype map of the human genome. Nature, 437:1299–1320, 2005.
[2] Ao, S.I., Yip, K., Ng, M., Cheung, D., Fong, P.Y., Melhado, I., and Sham,P.C. CLUSTAG:
hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics, 21(8):1735–
1736, 2004.
[3] Bafna, V., Gusfield, D., Lancia, G., and Yooseph, S. Haplotyping as perfect phylogeny: a direct
approach. Journal of Computational Biology, 10:323–340, 2003.
[4] Bafna, V., Halld’orsson, B.V., Schwartz, R., Clark, A.G., Istrail, S. Haplotypes and informative
SNP selection algorithms: don’t block out information. In Proc. RECOMB’03, pages 19–27,
2003.
[5] Brown, D., and Harrower I. A new integer programming formulation for the pure parsimony
problem in haplotype analysis. In Proc. WABI’04, 2004.
[6] Carlson, C.S., Eberle, M.A., Rieder, M.J., Yi, Q., Kruglyak, L., and Nickerson, D.A. Selecting
a maximally informative set of single-nucleotide polymorphisms for association analyses using
linkage disequilibrium. Am. J. Hum. Genet., 74:106–120, 2004.
[7] Chang, C.C. and Lin, C.J. LIBSVM: a library for support vector machines. Software available
at http://www.csie.ntu.edu.tw/?cjlin/libsvm, 2001.
[8] Chang, C.-J., Huang, Y.-T., and Chao, K.-M. A greedier appraoch for finding tag SNPs.
Bioinformatics, 22: 685-691, 2006.
[9] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. Introduction to algorithms, The MIT
Press, 2001.
[10] Crawfod, D.C. and Nickerson, D.A. Definition and clinical importance of haplotypes. Annu.
Rev. Med., 56:303–320, 2005.
[11] Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., and Lander, E.S. High-resolution haplotype
structure in the human genome. Nat Genet, 29(2):229–232, 2001.
[12] de Bakker, P.I., Yelensky, R., Pe’er, I., Gabriel, S.B., Daly, M.J., and Altshuler, D. Efficiency
and power in genetic association studies. Nat. Genet., pages 1217–1223, 2005.
[13] Douglas, J.A., Boehnke, M., Gillanders, E., Trent, J.M., and Gruber, S.B. Experimentallyderived
haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nat
Genet, 28(4):361–364, 2001.
[14] Drysdale, C., McGraw, D., Stack, C., Stephens, J., Judson, R., et al: Complex promoter and
coding region ‾2-adrenergic receptor haplotypes alter receptor expression and predict in vivo
responsiveness. Proceeding of National Academy of Sciences of USA, 97:10483–10488, 2000.
[15] Eskin, E., and Halperin, E. Large scale recovery of haplotypes from genotype data using imperfect
phylogeny. In Proc. RECOMB’03, pages 104–113, 2003.
[16] Even, G., Naor, J., Schieber, B., and Sudan, M. Approximating minimum feedback sets and
multicuts in directed graphs. Algorithmica, 20:151–174, 1998.
[17] Excoffier, L., and Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies
in a diploid population. Mol. Biol. Evol., 12:921–927, 1995.
[18] Forsgren, A., Gill, P.E., and Wright, M.H. Interior methods for nonlinear optimization. SIAM
Rev., 44:525–597, 2002.
[19] Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J.,
DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo, A., Cooper,
R., Ward, R., Lander, E.S., Daly, M.J., and Altshuler, D. The structure of haplotype blocks in
the human genome. Science, 296(5576):2225–2229, 2002.
[20] Garey, M.R., and Johnson, D.S. Computers and intractability, Freeman, New York, 1979.
[21] Gusfield, D. Inference of haplotypes from samples of diploid populations: complexity and algorithms.
J. Comp. Biol., 8:305–323, 2001.
[22] Gusfield, D. Haplotyping as perfect phylogeny: conceptual framework and efficient solutions.
In Proc. RECOMB’02, pages 166–175, 2002.
[23] Gusfield, D. Haplotyping by pure parsimony. In Proc. CPM’03, Lecture Notes in Computer
Science, 2676:144–155, 2003.
[24] Halld’orsson, B.V., Bafna, V., Lippert, R., Schwartz, R., Vega, F.M., Clark, A.G., and Istrail,
S. Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies.
Genome Research, pages 1633–1640, 2004.
[25] Halperin, E. and Eskin, E. Haplotype reconstruction from genotype data using imperfect
phylogeny. Bioinformatics, 2004.
[26] Helmuth, L. Genome research: map of the human genome 3.0. Science, 293(5530):583–585,
2001.
[27] Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.G., Frazer, K.A.,
Cox, D.R. Whole-genome patterns of common DNA variation in three human populations.
Science, 307:1072–1079, 2005.
[28] Houchbaum, D.S. Approximation algorithms for the set covering and vertex cover problems.
SIAM J. Comp., 11:555-556, 1982.
[29] Hu, N., Wang, C., Hu, Y., Yang, H.H., Giffen, C., Tang, Z.-Z., Han, X.-Y., Goldstein, A.M.,
Emmert, M.R., Buetow, K.H., and Taylor, P.R., and Lee, M.P. Genome-wide asspciation study
in esophageal cancer using genechip mapping 10K array. Cancer Research, 65(7):2542–2546,
2005.
[30] Huang, Y.-T., Zhang, K., Chen, T., and Chao, K.-M. Approximation algorithms for the selection
of robust tag SNPs. In Proc. WABI’04, pages 278–289, 2004.
[31] Huang, Y.-T., Zhang, K., Chen, T., and Chao, K.-M. Selecting additional tag SNPs for tolerating
missing data in genotyping. BMC Bioinformatics, 6:263, 2005.
[32] Huang, Y.-T., Chao, K.-M, and Chen, T. An approximation algorithm for haplotype inference
by pure parsimony. In Proc. ACM SAC’05, pages 146–150, 2005.
[33] Huang, Y.-T., Chao, K.-M, and Chen, T. An approximation algorithm for haplotype inference
by pure parsimony. Journal of Computational Biology, 12: 1261-1274, 2005.
[34] Hudon, R.R. Generating samples under a Wright-Fisher neutral model of genetic variation.
Bioinformatics, 18:337–338, 2002.
[35] Kennedy, G.C., Matsuzaki, H., Dong, S., Liu, W.M., Huang, J., Liu, G., Su, X., Cao, M.,
Chen, W., Zhang, J., Liu, W., Yang, G., Di, X., Ryder, T., He, Z., Surti, U., Phillips, M.S.,
Boyce-Jacino, M.T., Fodor, S.P., and Jones, K.W. Large-scale genotyping of complex DNA.
Nature Biotechnology, 21:1233–1237, 2003.
[36] Kerem, B., Rommens, J., Buchanan, J., Markiewicz, D., Cox, T., Chakravarti, A., Buchwald,
M., and Tsui, L.C. Identification of the cystic fibrosis gene: genetic analysis. Science, 245:1073–
1080, 1989.
[37] Lancia, G., Pinotti, C., and Rizzi., R. Haplotyping Populations: complexity, exact and approximation
algorithms. INFORMS Journal on computing, 16:348–359, 2004.
[38] Lewin, B. Genes VIII. Pearson Prentice-Hall, 2004.
[39] Lin, S., Cutler, D.J., Zwick, M.E., and Chakravarti, A. Haplotype inference in random population
samples. Am. J. Hum. Genet., 71:1129-1137, 2002.
[40] Lin, S., Chakravarti, A., and Cutler, D.J. Exhaustive allelic transmission disequilibirum tests
as a new approach to genome-wide association studies. Nature Genetics, 36:1181-1188, 2004.
[41] Liu, W.M., Di, X., Yang, G., Matsuzaki, H., Huang, J., Mei, R., Ryder, T.B., Webster, T.A.,
Dong, S., Liu, G., Jones, K.W., Kennedy, G.C., and Kulp, D. Algorithms for Large Scale
Genotyping Microarrays. Bioinformatics, 19:2397-2403, 2003.
[42] LP Solve [http://www.cs.sunysb.edu/?algorith/implement/lp solve/implement.shtml]
[43] Niu, T., Qin, Z., Xu, X., and Liu, J.S. Bayesian haplotype inference for multiple linked singlenucleotide
polymorphisms. Am. J. Hum. Genet., 70:157–159, 2002.
[44] Ott, J., and Hoh, J. Set association analysis of SNP case-control and microarray data. Journal
of Computational Biology, 10:569-574, 2003.
[45] Papadimitriou, C. H., and Yannakakis, M. Optimization, approximation, and complexity
classes. J. Comput. System Sci., 43:425-440, 1991.
[46] Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R.,
Lee, D.H., Marjoribanks, C., McDonough, D.P., et al. Blocks of limited haplotype diversity
revealed by high-resolution scanning of human chromosome 21. Science, 294:1719–1723, 2001.
[47] Qin, Z., Niu, T., and Liu, J. Partitioning-ligation-expectation-maximization algorithm for haplotype
inference with single-nucleotide Ploymorphisms. Am. J. Hum. Genet., 71:1242–1247,
2002.
[48] Qin, Z.S., Gopalakrishnan, S., Abecasis, G.R. An efficient comprehensive search algorithm
for TagSNP selection using linkage disequilibirium criteria. Bioinformatics, 99(11):7335–7339,
2006.
[49] Quinlan, R. C4.5: programs for machine learning. Morgan Kaufmann Publishers, 1993.
[50] Seltman, H., Roeder, K., and Devlin, B. Transmission/disequilibrium test meets measured
haplotype analysis: family-based association analysis guided by evolution of haplotypes. Am.
J. Hum. Genet., 68(5):1250–1263, 2001.
[51] Sharan, R., Halldorsson, B.V., and Istrail, S. Islands of Tractability for Parsimony Haplotyping.
In Proc. CSB’05, 65–72, 2005.
[52] Stephens, M., Smith, N.J., and Donnelly, P. A new statistical method for haplotype reconstruction
from population data. Am. J. Hum. Genet., 68(4):978–989, 2001.
[53] Stephens, M., and Donnelly, P. A comparison of bayesian methods for haplotype reconstruction
from population genotype data. Am. J. Hum. Genet., 73:1162–1169, 2003.
[54] Stram, D.O., Haiman, C.A., Hirschhorn J.N., Altshuler, D., Kolonel, L.N., Henderson, B.E.,
and Pike, M.C. Choosing haplotype-tagging SNPs based on unphased genotype data using a
preliminary sample of unrelated subjects with an example from the multiethnic cohort study.
Hum. Hered., 55:27–36, 2003.
[55] Tang, E.K., Suganthan, P.N., and Yao, X. Gene selection algorithms for microarray data based
on the least quares support vector machine. BMC Bioinformatics, 7:95, 2006.
[56] Tsalenko, A., Ben-Dor, A., Cox, N., and Yakhini, Z. (2003) Methods for analysis and visualization
of SNP genotype data for complex diseases. PSB’03, 548–561.
[57] The Genome Sequencing Project. Initial sequencing and analysis of human genome. Nature,
409:860–921, 2001.
[58] Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., et al: The sequence of the
human genome. Science, 291(5507):1304–1351, 2001.
[59] Wang, L., and Xu, Y. Haplotype inference by maximum parsimony. Bioinformatics,
19(14):1773–1780, 2003.
[60] Weal, M.E., Depondt, C., Macdonald, S.J., Smith, A., Lai, P.S., Shorvon, S.D., Wood, N.W.,
Goldstein, D.B. Selection and avalulation of taggign SNPs in the neuronal-sodium-channel gene
SCN1A: implications for linkage diequilibrium gene mapping. Am. J. Hum. Genet., 73:551–565,
2003.
[61] Witten, I.H. and Frank, E. Data Mining: Practical machine learning tools and techniques, 2nd
Edition, Morgan Kaufmann, San Francisco, 2005.
[62] Yan, H, Papadopoulos, N., Marra, G., et al: Conversion of diploidy to haploidy. Nature,
403:723–724, 2000.
[63] Yang, Y., Zhang, J., Hoh, J., Matsuda, F., Xu, P., Lathrop, M., Ott, J. Efficiency of singlenucleotide
polymorphism haplotype estimation from pooled DNA. Proc. Nat. Acad. Sci.,
100(12):7225–7230, 2003.
[64] Zhang, K., Deng, M., Chen, T., Waterman, M.S., and Sun, F. A dynamic programming algorithm
for haplotype partitioning. Proc. Nat. Acad. Sci., 99(11):7335–7339, 2002.
[65] Zhang, K., Sun, F., Waterman, M.S., and Chen, T. Haplotype block partition with limited
resources and applications to human chromosome 21 haplotype data. Am. J. Hum. Genet.,
73:63–73, 2003.
[66] Zhang, K., Qin, Z.S., Liu, J.S., Chen, T., Waterman, M.S., and Sun, F. Haplotype block partition
and tag SNP selection using genotype data and their applications to association studies.
Genome Research, 14:908–916, 2004.
[67] Zhao, J.H., Lissarrague, S., Essioux, L., and Sham, P.C. GENECOUNTING: haplotype analysis
with missing genotypes. Bioinformatics, 18:1694–1695, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34277-
dc.description.abstract本論文探討一系列與單核苷酸多型性與單體型相關之最佳化問題。本論文中大多數探討之問題都被證明為難題。為了能有效率地解決這些難題,我們設計並實作一系列近似演算法。經由理論分析與實驗佐證,我們證明所設計的演算法不僅有良好的執行速度,其所找到的近似解亦可相當逼近最佳解。
本論文的第一部份探討如何尋找一組單核苷酸多型性,稱為強固型標籤單核苷酸多型性,可以容許在實驗中遺失部分單核苷酸多型性。我們證明要尋找最少數量的強固型標籤單核苷酸多型性為一難題。為了能有效率的解決此一難題,我們提出了兩種貪婪演算法與一種線性規劃釋限演算法。我們的理論分析與實驗結果顯示這些演算法不僅執行速度很快,更可以找到相當接近最佳解之近似解。
本論文的第二部份探討如何利用多標記單體型,尋找一組最少量的標籤單核苷酸多型性。我們將此問題切割成三個子問題,並證明其中兩個子問題為難題。我們提出一些精確與近似演算法來分別解決這三個子問題。實驗結果顯示我們整合這些演算法所開發出的軟體,不僅可比現有的軟體找出更少量的標籤單核苷酸多型性,其執行速度亦有顯著的提升。
本論文的第三部份探討在基於最大簡約法則下,從基因型資料中推測出單體型資料。我們將此問題表示為一個整數二次方規劃的問題,然後提出一個基於半正定規劃之反覆式近似演算法來解決此問題。我們的理論分析與實驗結果顯示我們開發出的軟體,不僅可以找出相當逼近最佳解之近似解,更可以比現有的軟體在部分資料下得到較好的推測正確率。
本論文的第四部份探討如何在在全基因組關連分析中,選擇一些具有鑑別性的單核苷酸多型性來區分出病例與對照之樣本。我們設計了一個有效率的演算法來尋找具有鑑別性的單核苷酸多型性,並與目前既有之軟體在各種分類器下作比較。我們的實驗結果顯示此演算法在選擇足夠的鑑別性單核苷酸多型性下,可以比其他方法得到較高的鑑別正確率。
zh_TW
dc.description.abstractThis dissertation studies several optimization problems related to SNPs and haplotypes. Most problems studied in this dissertation are shown to be NP-hard. To efficiently solve these problems, we design and implement a series of approximation algorithms. Our theoretical analysis and experimental results indicate that these algorithms are
not only efficient but the solutions found by them are also quite close to the optimal solution.
In Part I of this dissertation, we show that there exists a set of SNPs called robust tag SNPs which can tolerate missing SNPs in genotyping. The problem of finding a minimum set of robust tag SNPs is shown to be NP-hard. We give two greedy algorithms and one linear programming relaxation algorithm to efficiently solve this problem. Our theoretical analysis and experimental results show that these algorithms not only run very fast but also find nearly-optimal solutions.
In Part II of this dissertation, we study the problem of selecting a minimum set of tag SNPs by multimarker haplotypes. This problem is divided into three subproblems, two of which are shown to be NP-hard. Several exact and approximation algorithms are proposed to solve these subproblems. The experimental results indicate that the program developed by integrating these algorithms finds a smaller set of tag SNPs and runs much faster than existing methods.
In Part III of this dissertation, we study the problem of haplotype inference by maximum parsimony. We formulate this problem as an integer quadratic programming problem and present an iterative semi-definite programming relaxation based approximation algorithm. Our theoretical analysis and experimental results show that the solution found is not only close to the optimal solution but the accuracy is also improved in comparison with existing methods.
In Part IV of this dissertation, we study the problem of selecting discriminative SNPs for classifying cases and controls in genome-wide association studies. We describe an efficient algorithm for identifying discriminative SNPs and compare it with several existing methods using a variety of classifiers. The experimental results indicate that our method consistently obtains better accuracies than other methods when sufficient discriminative SNPs are selected.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:01:02Z (GMT). No. of bitstreams: 1
ntu-95-D92922023-1.pdf: 723294 bytes, checksum: 167cd45ebe3aa3911c7fc3ffb1131c05 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 Introduction 1
1.1 Background and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 SNPs and Haplotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Linkage Disequilibrium and Chromosome Recombination . . . . . . . . . . . 4
1.1.3 Haplotype Blocks and Tag SNPs . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Problems and Manuscript Plan . . . . . . . . . . . . . . . . . . . . . . . 5
2 Approximation Algorithms for the Selection of Robust Tag SNPs 9
2.1 Related Works on the Problem of Finding Tag SNPs . . . . . . . . . . . . . 9
2.2 The Problem of Missing Data in Genotyping . . . . . . . . . . . . . . . . . 10
2.3 Methods for Finding Robust Tag SNPs . . . . . . . . . . . . . . . . . . . . 12
2.3.1 The First Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 The Second Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 The Iterative LP-relaxation Algorithm . . . . . . . . . . . . . . . . . . 19
2.4 Methods for Finding Auxiliary Tag SNPs . . . . . . . . . . . . . . . . . . 22
2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 Approximation Algorithms for the Selection of Tag SNPs by Multimarker Haplotypes
31
3.1 Related Works on the Problem of Selecting Tag SNPs by Multimarker Haplotypes 32
3.2 Formulation and Hardness of the MHTP Problem . . . . . . . . . . . . . . . . 34
3.3 An Approximation Algorithm for the MHTP Problem . . . . . . . . . . . . . . 36
3.4 Exact and Approximation Algorithms for Solving Subproblems of MTMH . . . . . 38
3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 An Approximation Algorithm for Haplotype Inference 51
4.1 Related Works on the Problem of Haplotype Inference . . . . . . . . . . . . 51
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Discriminative SNPs Selection for Genome Wide Association Studies 67
5.1 Related Works on the Problem of Selecting Discriminative SNPs . . . . . . . 68
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Discriminative SNPs Selection Method . . . . . . . . . . . . . . . . . . . 69
5.2.2 Classification Method . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6 Conclusion 81
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
dc.language.isoen
dc.subject單體型zh_TW
dc.subject近似演算法zh_TW
dc.subject單核&#33527zh_TW
dc.subject酸多型性zh_TW
dc.subject基因型zh_TW
dc.subjectGenotypeen
dc.subjectAppproximation Algorithmen
dc.subjectSingle Nucleotide Polymorphismen
dc.subjectHaplotypeen
dc.title單核苷酸多型性與單體型相關的最佳化問題之研究zh_TW
dc.titleA Study on Some Optimization Problems Related to SNPs and Haplotypesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee徐熊健(Shyong-Jian Shyu),呂學一(Heueh-I Lu),歐陽明(Ming Ouhyoung),黃奇英(Chi-Ying Huang),歐陽彥正(Yen-Jen Oyang),高成炎(Cheng-Yan Kao)
dc.subject.keyword單核&#33527,酸多型性,單體型,基因型,近似演算法,zh_TW
dc.subject.keywordSingle Nucleotide Polymorphism,Haplotype,Genotype,Appproximation Algorithm,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2006-06-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
706.34 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved