請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁儷禎 | |
| dc.contributor.author | Hsin-Yun Liu | en |
| dc.contributor.author | 劉心筠 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:00:52Z | - |
| dc.date.available | 2011-07-28 | |
| dc.date.copyright | 2011-07-28 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | 翁儷禎、鄭中平(1996)。結構方程模型增益性適合度指標與估計方法之關係。「調查研究」,2,89-109。
翁儷禎(2010)。「參數數目於結構方程模型樣本人數取決之角色」。行政院國家科學委員會專題研究計畫成果報告(編號:NSC97-2410-H-002-160-MY2)。 Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factory analysis. Psychometrika, 49, 155-173. Barrett, P. (2007). Structural equation modeling: Adjudging model fit. Personality and Individual Differences, 42, 815-824. Bentler, P. M. (2006). EQS 6 structural equations program manual. Encino, CA: Multivariate Software, Inc. Bentler, P. M., & Chou, C. -P. (1987). Practical issues in structural modeling, Sociological Methods and Research, 16, 78-117. Bentler, P. M., & Dudgeon, P. (1996). Covariance structure analysis: Statistical practice, theory, and directions. Annual Review of Psychology, 47, 563-592. Bentler, P. M. & Yuan, K. -H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34, 181-197. Boomsma, A. (1983). On the robustness of LISREL (Maximum Likelihood Estimation) against small sample size and non-normality. Unpublished doctoral dissertation, University of Groningen, Netherlands. Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation. Psychomerika, 50, 229-242. Boomsma A. (1987). The robustness of maximum likelihood estimation in structural equation models. In P. Cuttance, & R. Ecob (Eds.), Structural modeling by example: Application in educational, sociological and behavioral research (pp. 160-188). NY: Cambridge University Press. Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. du Toit, & D. Sörbom (Eds.), Structural equation models, present and future: A festschrift in honor of Karl Jöreskog (pp. 139-168). Lincolnwood, IL: Scientific Software International. Brossart, D. F., Willson, V. L., Patton, M. J., Kivlighan, D. M., Jr., & Multon, K. D. (1998). A time series model of the working alliance: A key process in short-term psychoanalytic counseling. Psychotherapy, 35, 197-205. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. In K. Bollen, & K. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage. Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistics in structural equation models. Sociological Methods & Research, 36, 462-494. Chou, C. -P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for nonnormal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 347-357. Cohen, J. (1988). Statistical power analysis for the behavior sciences (2nd ed.). Hillsdale, NJ: Erlbaum. Cudeck, R., & Henly, S. J. (1991). Model selection in covariance structures analysis and the 'problem' of sample size: A clarification. Psychological Bulletin, 109, 512-519. Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. (2003). Finite sampling properties of the point estimates and confidence intervals of the RMSEA. Sociological Methods & Research, 32, 208-252. Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J., & Chen, F. (2002). The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation. Multivariate Behavioral Research, 37, 1-36. Curran, P. J., West, S. G.., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16-29. Ding, L., Velicer, W. F., & Harlow, L. L. (1995). Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2, 119-144. DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23, 225-241. Dolan, C. V. (1994). Factor analysis of variables with 2, 3, 5, and 7 response categories: A comparison of categorical vairable estimators using simulated data. British Journal of Mathematical and Statistical Psychology, 47, 309-326. Fan, X., & Sivo, S. A. (2005). Sensitivity of fit indices to misspecified structural or measurement model components: Rationale of two-index strategy revisited. Structural Equation Modeling, 12, 343-367. Fan, X., & Sivo, S. A. (2007). Sensitivity of fit indices to model misspecification and model types. Multivariate Behavioral Research, 42, 509-529. Fan, X., & Wang, L. (1998). Effects of potential confounding factors on fit indices and parameters estimates for true and misspecified SEM models. Educational and Psychological Measurement, 58, 701-735. Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6, 56-83. Foldnes, N., Olsson, U. H., & Foss, T. (in press). The effect of kurtosis on the power of two test statistics in covariance structure analysis. British Journal of Mathematical and Statistical Psychology. Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling, 7, 356-410. Gagné, P., & Hancock, G. R. (2006). Measurement model quality, sample size, and solution propriety in confirmatory factor models. Multivariate Behavior Research, 41, 65-83. Gerbing, D. W., & Anderson, J. C. (1993). Monte Carlo evaluation of goodness-of-fit indices for structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 40-59). Newbury Park, CA: Sage. Guo, B., Perron, B. E., & Gillespie, D. F. (2009). A systematic review of structural equation modeling in social work research. British Journal of Social Work, 39, 1556-1574. Hancock, G. R., & Freeman, M. J. (2001). Power and sample size for the root mean square error of approximation test of not close fit in structural equation modeling. Educational and Psychological Measurement, 61, 741-758. Herzog, W., & Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling, 16, 1-27. Herzog, W., Boomsma, A., & Reinecke, S. (2007). The model-size effect on traditional and modified tests of covariance structures. Structural Equation Modeling, 14, 361-390. Hoogland, J. J. & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods & Research, 26, 329-367. Hu, L. -T., & Benter, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424-453. Hu, L. -T., & Benter, P. M. (1999). Cutoff criteria for indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55. Hu, L. -T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-362. Jackson, D. L. (2001). Sample size and number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8, 205-223. Jackson, D. L. (2003). Revisiting sample size and number of parameter estimates: Some support for the N:q hypothesis. Structural Equation Modeling, 10, 128-141. Jackson, D. L. (2007). The effect of the number of observations per parameter in misspecified confirmatory factor analytic models. Structural Equation Modeling, 14, 48-76. Jackson, D. L., Gillaspy, J. A., Jr., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6-23. Jöreskog, K. G.., & Sörbom, D. (2001). LISREL 8: User’s reference guide. Lincolnwood, IL: Scientific Software International, Inc. Kenny, D. A., & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling, 10, 333-351. Kline, R. B. (2011). Principles and practice of structural equation modeling. New York: Guilford. La Du, T. J., & Tanaka, J. S. (1989). Influence of samples size, estimation method, and model specification on goodness-of-fit assessments in structural equation models. Journal of Applied Psychology, 74, 625-635. Lei M., & Lomax, R. G. (2005). The effect of varying degrees of nonnormality in structural equation modeling. Structural Equation Modeling, 12, 1-27. Liu, H.-Y., & Weng, L.-J. (2006, October). Is the consideration of number of parameters unnecessary in determining necessary sample size by MacCallum, Browne, and Sugawara (1996)? Poster session presented at the Annual Meeting of the Taiwanese Psychological Association, Taipei. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149. Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexed and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11, 320-341. Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indictors per factors in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181-222. Martens, M. P. (2005). The use of structural equation modeling in counseling psychology research. The Counseling Psychologist, 33, 269-298. Matsueda, R. L., & Bielby, W. T. (1986). Statistical Power in Covariance Structure Models. Sociological Methodology, 16, 120-158 Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychology, 59, 537-563. McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analysis. Psychological Methods, 7, 64-82. Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156-166. Muthén, B., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189. Muthén, O. B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 19-30. Muthén, L. K., & Muthén, O. B. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9, 599-620. Nevitt, J., & Hancock, G. R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439-478. Olsson, U. H., Foss, T., & Breivik, E. (2004). Two equivalent discrepancy functions for maximum likelihood estimation: Do their test statistics follow a non-central chi-square distribution under model misspecification? Sociological Methods and Research, 32, 453-500. Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: Design and implementation. Structural Equation Modeling, 8, 287-312. Raykov, T., & Widaman, K. F. (1995). Issues in applied structural equation modeling research. Structural Equation Modeling, 2, 289-318. Satorra, A. & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. American Statistical Association 1988 proceedings of the Business and Economics Sections (pp. 308-313). Alexandria, VA: American Statistical Association. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye, & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Thousand Oaks, CA: Sage. Satorra, A., & Saris, W. E. (1985). The power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83-90. Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99, 323-337. Shah R., & Gildstein S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24, 148-169. Sivo, S. A., Fan, X., Witta, E. L., & Willse, J. T. (2006). The search for “Optimal” cutoff properties: Fit index criteria in structural equation modeling. The Journal of Experimental Education, 74, 267-288. Tanaka, J. S. (1987). “How big is big enough?”: Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146. Tanguma, J. (2001). Effects of sample size on the distribution of selected fit indices: A graphical approach. Educational and Psychological Measurement, 61, 759-776. Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10. Weng, L. -J., & Liu, H. -Y. (2009, July). The role of number of parameters in sample size consideration in structural equation modeling: Would the search for optimal N:q ratios be possible? Poster session presented at the 16th International Meeting of the Psychometric Society, Cambridge, England. Westland, J. C. (2010). Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications, 9, 476-487. Yuan, K. -H. & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767-774. Yuan, K. -H. & Bentler, P. M. (1998). Normal theory based test statistics in structural equation modeling. British Journal of Mathematical and Statistical Psychology, 51, 289-309. Yuan, K. -H. & Bentler, P. M. (2010). Two simple approximations to the distributions of quadratic forms. British Journal of Mathematical and Statistical Psychology, 63, 273-291. Yuan, K. -H., Bentler, P. M., & Zhang, W. (2005). The effect of skewness and kurtosis on mean and covariance structure analysis: the univariate case and its multivariate implication. Sociological Methods and Research, 34, 240-258. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34273 | - |
| dc.description.abstract | 結構方程模型奠基於大樣本理論,需要具有足夠的樣本人數,方能避免影響檢定統計量與參數估計值之統計特性而誤導研究推論,故足夠樣本人數為實徵研究者關切的議題。樣本人數取決方法主要有三種取向,絕對樣本人數、樣本人數與參數數目的比值(N:q)、與檢定力分析法,直至目前尚未有三種取向的比較研究,對於樣本人數議題也尚未有定論。本模擬研究在假設模式為真與假設模式錯誤情境下,操弄模式規模、樣本人數、因素負荷量與變項分配,以檢定統計量與適合度指標的表現,比較絕對樣本人數200人、N:q比、與RMSEA檢定力法,並提出樣本人數取決之適宜準則,做為研究者決定樣本人數之參考。結果顯示,當變項為常態分配,絕對樣本人數200人與RMSEA檢定力法建議的樣本人數,因未能適當地反映模式規模,對於規模較大的模式(以參數數目為定義),建議的樣本人數可能會有不適宜的情形。相較之下,可以反映模式規模的N:q比值為較適當之樣本人數取決方法,N:q≧10為可行的樣本人數取決原則。當變項為輕微偏離常態分配,以SBS統計量分析,N:q≧10為可行的樣本人數取決原則,但隨著變項越偏離常態分配,需要更多的樣本人數方能有穩定的分析結果。在適合度指標方面,當N:q≧5,即使變項為非常態分配,仍有可接受的表現。 | zh_TW |
| dc.description.abstract | The statistical theory of structural equation modeling (SEM) is based on large sample theory. Thus, determining a sufficient sample size is an important issue for application of the method. The commonly adopted approaches to the issue include absolute sample size, ratio of sample size to number of parameters, and power analysis via RMSEA (root mean squared error of approximation). Yet, there have been no comparative studies of these three approaches and no consensus concerning the optimal sample size determination with SEM has been reached. The present Monte Carlo study is designed to explore the appropriateness of the sample sizes suggested by these three approaches by examining the performance of maximum likelihood-based test statistics and fit indices. Distributions of variables, sample sizes, models of various sizes, and factor loadings were systematically manipulated. For variables of normal distribution, results showed that absolute minimum sample size and sample size suggested by power analysis via RMSEA were insufficient against large models (operationally defined by the number of estimated parameters). This, therefore, implicitly highlights the importance of considering sample size in relation to the number of parameters estimated (q). The findings suggested that N:q ≧ 10 seemed a plausible rule of thumb for sample size determination in SEM. For slightly nonnormally-distributed data, the results suggested that N:q ≧ 10 might also be a plausible rule of thumb. Moreover, the optimal N:q ratios needed to be larger in order to yield trustworthy test statistics as the degree of non-normality in the data increased. In addition, the behavior of fit indices could be considered acceptable with N:q ≧ 5, even for non-normally distributed variables. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:00:52Z (GMT). No. of bitstreams: 1 ntu-100-D91227002-1.pdf: 704173 bytes, checksum: b0a2c9661c4b4a008f8b6350a45d0c8a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 第一章 緒論 1
第一節 前言 1 第二節 檢定統計量的基本概念 5 第三節 決定樣本人數取向的相關評論 10 第四節 樣本人數之相關研究 20 第五節 本計畫之目的與假設 25 第二章 研究方法 27 第一節 研究設計 27 第二節 資料分析方法 43 第三章 研究結果 47 第一節 研究一A:假設模式為真且變項分配為常態 48 第二節 研究二A:假設模式錯誤且變項分配為常態 62 第三節 研究一B:假設模式為真且變項分配為非常態分配 76 第四節 研究二B:假設模式錯誤且變項分配為非常態分配 87 第四章 結論與討論 99 第一節 變項為常態分配之樣本人數取決方法比較 100 第二節 變項為非常態分配樣本人數之合宜性 104 第三節 樣本人數之建議 107 第四節 研究限制與未來研究方向 114 參考文獻 119 附錄 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 卡方統計量 | zh_TW |
| dc.subject | 適合度指標 | zh_TW |
| dc.subject | 參數數目 | zh_TW |
| dc.subject | 樣本人數 | zh_TW |
| dc.subject | 結構方程模式 | zh_TW |
| dc.subject | fit indices | en |
| dc.subject | number of estimated parameters | en |
| dc.subject | test statistics | en |
| dc.subject | sample size | en |
| dc.subject | structural equation modeling | en |
| dc.title | 以ML檢定統計量評估結構方程模型足夠樣本人數之決定 | zh_TW |
| dc.title | Determination of Sufficient Sample Sizes in SEM
via ML-based Test Statistics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 姚開屏,楊志堅,蔡蓉青,鄭中平,謝雨生 | |
| dc.subject.keyword | 結構方程模式,樣本人數,參數數目,卡方統計量,適合度指標, | zh_TW |
| dc.subject.keyword | structural equation modeling,sample size,number of estimated parameters,test statistics,fit indices, | en |
| dc.relation.page | 136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 心理學研究所 | zh_TW |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 687.67 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
