請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳建春(Jiahn-Chun Wu) | |
| dc.contributor.author | Tun-Hui Chung | en |
| dc.contributor.author | 鍾敦輝 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:00:31Z | - |
| dc.date.available | 2006-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-26 | |
| dc.identifier.citation | 參考文獻
1. Aronica SM, Kraus WL, Katzenellenbogen BS (1994): Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci U S A 91:8517-21. 2. Barp J, Araujo AS, Fernandes TR, Rigatto KV, Llesuy S, Bello-Klein A, Singal P (2002): Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res 35:1075-81. 3. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000): Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656-62. 4. Booth EA, Marchesi M, Kilbourne EJ, Lucchesi BR (2003): 17Beta-estradiol as a receptor-mediated cardioprotective agent. J Pharmacol Exp Ther 307:395-401. 5. Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ (2001): Protein kinase C-alpha and -epsilon modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol 33:789-98. 6. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999): Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 103:401-6. 7. Cooper CD, Lampe PD (2002): Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277:44962-8. 8. Dan P, Cheung JC, Scriven DR, Moore ED (2003): Epitope-dependent localization of estrogen receptor-alpha, but not -beta, in en face arterial endothelium. Am J Physiol Heart Circ Physiol 284:H1295-306. 9. Doble BW, Chen Y, Bosc DG, Litchfield DW, Kardami E (1996): Fibroblast growth factor-2 decreases metabolic coupling and stimulates phosphorylation as well as masking of connexin43 epitopes in cardiac myocytes. Circ Res 79:647-58. 10. Doble BW, Ping P, Kardami E (2000): The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293-301. 11. Duthe F, Dupont E, Verrecchia F, Plaisance I, Severs NJ, Sarrouilhe D, Herve JC (2000): Dephosphorylation agents depress gap junctional communication between rat cardiac cells without modifying the Connexin43 phosphorylation degree. Gen Physiol Biophys 19:441-9. 12. Goodenough DA, Goliger JA, Paul DL (1996): Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475-502. 13. Grohe C, Kahlert S, Lobbert K, Stimpel M, Karas RH, Vetter H, Neyses L (1997): Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107-12. 14. Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE (1997): Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 99:1991-8. 15. Hossain MZ, Ao P, Boynton AL (1998): Platelet-derived growth factor-induced disruption of gap junctional communication and phosphorylation of connexin43 involves protein kinase C and mitogen-activated protein kinase. J Cell Physiol 176:332-41. 16. Hossain MZ, Jagdale AB, Ao P, Boynton AL (1999): Mitogen-activated protein kinase and phosphorylation of connexin43 are not sufficient for the disruption of gap junctional communication by platelet-derived growth factor and tetradecanoylphorbol acetate. J Cell Physiol 179:87-96. 17. Jovanovic S, Jovanovic A, Shen WK, Terzic A (2000): Low concentrations of 17beta-estradiol protect single cardiac cells against metabolic stress-induced Ca2+ loading. J Am Coll Cardiol 36:948-52. 18. Kanemitsu MY, Lau AF (1993): Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase. Mol Biol Cell 4:837-48. 19. Kanemitsu MY, Loo LW, Simon S, Lau AF, Eckhart W (1997): Tyrosine phosphorylation of connexin 43 by v-Src is mediated by SH2 and SH3 domain interactions. J Biol Chem 272:22824-31. 20. Kannel WB, Hjortland MC, McNamara PM, Gordon T (1976): Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med 85:447-52. 21. Kim YD, Chen B, Beauregard J, Kouretas P, Thomas G, Farhat MY, Myers AK, Lees DE (1996): 17 beta-Estradiol prevents dysfunction of canine coronary endothelium and myocardium and reperfusion arrhythmias after brief ischemia/reperfusion. Circulation 94:2901-8. 22. Laing JG, Tadros PN, Westphale EM, Beyer EC (1997): Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp Cell Res 236:482-92. 23. Laird DW, Puranam KL, Revel JP (1991): Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1):67-72. 24. Lampe P, Kurata W, Warn-Cramer B, Lau A (1998): Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34cdc2 kinase. J Cell Sci 111:833-841. 25. Lampe PD, Lau AF (2000): Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205-15. 26. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF (2000): Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503-12. 27. Lau AF, Hatch-Pigott V, Crow DS (1991): Evidence that heart connexin43 is a phosphoprotein. J Mol Cell Cardiol 23:659-63. 28. Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002): Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A 99:10446-51. 29. Lee TM, Lin MS, Chou TF, Tsai CH, Chang NC (2004): Adjunctive 17beta-estradiol administration reduces infarct size by altered expression of canine myocardial connexin43 protein. Cardiovasc Res 63:109-17. 30. Lee TM, Su SF, Tsai CC, Lee YT, Tsai CH (2000): Cardioprotective effects of 17 beta-estradiol produced by activation of mitochondrial ATP-sensitive K(+)Channels in canine hearts. J Mol Cell Cardiol 32:1147-58. 31. Li WE, Nagy JI (2000): Connexin43 phosphorylation state and intercellular communication in cultured astrocytes following hypoxia and protein phosphatase inhibition. Eur J Neurosci 12:2644-50. 32. Lin D, Zhou J, Zelenka PS, Takemoto DJ (2003): Protein kinase Cgamma regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest Ophthalmol Vis Sci 44:5259-68. 33. Lin R, Warn-Cramer BJ, Kurata WE, Lau AF (2001): v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J Cell Biol 154:815-27. 34. Marquardt B, Frith D, Stabel S (1994): Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene 9:3213-8. 35. Murdoch FE, Gorski J (1991): The role of ligand in estrogen receptor regulation of gene expression. Mol Cell Endocrinol 78:C103-8. 36. Musil LS, Goodenough DA (1991): Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357-74. 37. Nemere I, Pietras RJ, Blackmore PF (2003): Membrane receptors for steroid hormones: signal transduction and physiological significance. J Cell Biochem 88:438-45. 38. Node K, Kitakaze M, Kosaka H, Minamino T, Funaya H, Hori M (1997): Amelioration of ischemia- and reperfusion-induced myocardial injury by 17beta-estradiol: role of nitric oxide and calcium-activated potassium channels. Circulation 96:1953-63. 39. Nuedling S, Kahlert S, Loebbert K, Doevendans PA, Meyer R, Vetter H, Grohe C (1999a): 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc Res 43:666-74. 40. Nuedling S, Kahlert S, Loebbert K, Meyer R, Vetter H, Grohe C (1999b): Differential effects of 17beta-estradiol on mitogen-activated protein kinase pathways in rat cardiomyocytes. FEBS Lett 454:271-6. 41. Ratajczak P, Damy T, Heymes C, Oliviero P, Marotte F, Robidel E, Sercombe R, Boczkowski J, Rappaport L, Samuel JL (2003): Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57:358-69. 42. Razandi M, Pedram A, Greene GL, Levin ER (1999): Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol 13:307-19. 43. Rybin VO, Xu X, Steinberg SF (1999): Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation. Circ Res 84:980-8. 44. Saez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL (1997): Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131-45. 45. Schubert AL, Schubert W, Spray DC, Lisanti MP (2002): Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41:5754-64. 46. Shah MM, Martinez AM, Fletcher WH (2002): The connexin43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem 238:57-68. 47. Shiokawa-Sawada M, Mano H, Hanada K, Kakudo S, Kameda T, Miyazawa K, Nakamaru Y, Yuasa T, Mori Y, Kumegawa M, Hakeda Y (1997): Down-regulation of gap junctional intercellular communication between osteoblastic MC3T3-E1 cells by basic fibroblast growth factor and a phorbol ester (12-O-tetradecanoylphorbol-13-acetate). J Bone Miner Res 12:1165-73. 48. Stampfer MJ, Colditz GA (1991): Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prev Med 20:47-63. 49. Sugishita K, Li F, Su Z, Barry WH (2003): Anti-oxidant effects of estrogen reduce [Ca(2+)](i) during metabolic inhibition. J Mol Cell Cardiol 35:331-6. 50. Sylvia VL, Walton J, Lopez D, Dean DD, Boyan BD, Schwartz Z (2001): 17 beta-estradiol-BSA conjugates and 17 beta-estradiol regulate growth plate chondrocytes by common membrane associated mechanisms involving PKC dependent and independent signal transduction. J Cell Biochem 81:413-29. 51. Toyofuku T, Akamatsu Y, Zhang H, Kuzuya T, Tada M, Hori M (2001): c-Src regulates the interaction between connexin-43 and ZO-1 in cardiac myocytes. J Biol Chem 276:1780-8. 52. van Eickels M, Patten RD, Aronovitz MJ, Alsheikh-Ali A, Gostyla K, Celestin F, Grohe C, Mendelsohn ME, Karas RH (2003): 17-beta-estradiol increases cardiac remodeling and mortality in mice with myocardial infarction. J Am Coll Cardiol 41:2084-92. 53. Warn-Cramer BJ, Cottrell GT, Burt JM, Lau AF (1998): Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem 273:9188-96. 54. Warn-Cramer BJ, Lampe PD, Kurata WE, Kanemitsu MY, Loo LW, Eckhart W, Lau AF (1996): Characterization of the mitogen-activated protein kinase phosphorylation sites on the connexin-43 gap junction protein. J Biol Chem 271:3779-86. 55. Watson CS, Norfleet AM, Pappas TC, Gametchu B (1999): Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-alpha. Steroids 64:5-13. 56. Williams TM, Lisanti MP (2004): The caveolin proteins. Genome Biol 5:214. 第一章 1. Ai X, Pogwizd SM (2005): Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54-63. 2. Babiker FA, De Windt LJ, van Eickels M, Grohe C, Meyer R, Doevendans PA (2002): Estrogenic hormone action in the heart: regulatory network and function. Cardiovasc Res 53:709-19. 3. Barrigon S, Wang SY, Ji X, Langer GA (1996): Characterization of the calcium overload in cultured neonatal rat cardiomyocytes under metabolic inhibition. J Mol Cell Cardiol 28:1329-37. 4. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000): Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656-62. 5. Burt JM (1987): Block of intercellular communication: interaction of intracellular H+ and Ca2+. Am J Physiol 253:C607-12. 6. Caulin-Glaser T, Garcia-Cardena G, Sarrel P, Sessa WC, Bender JR (1997): 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ Res 81:885-92. 7. Eisner DA, Nichols CG, O'Neill SC, Smith GL, Valdeolmillos M (1989): The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol 411:393-418. 8. Grohe C, Kahlert S, Lobbert K, Stimpel M, Karas RH, Vetter H, Neyses L (1997): Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107-12. 9. Guan X, Wilson S, Wilson SKK, Schlender KKRJ (1996): Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid. Mol Carcinog 16:157-64. 10. Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE (1997): Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 99:1991-8. 11. Jain SK, Schuessler RB, Saffitz JE (2003): Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138-44. 12. Jeyaraman M, Tanguy S, Fandrich RR, Lukas A, Kardami E (2003): Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostriecin. Mol Cell Biochem 242:129-34. 13. Jovanovic S, Jovanovic A, Shen WK, Terzic A (2000): Low concentrations of 17beta-estradiol protect single cardiac cells against metabolic stress-induced Ca2+ loading. J Am Coll Cardiol 36:948-52. 14. Katzenellenbogen BS, Montano MM, Le GP, Schodin DJ, Kraus WL, Bhardwaj B, Fujimoto N (1995): Antiestrogens: mechanisms and actions in target cells. J Steroid Biochem Mol Biol 53:387-93. 15. Kitakaze M, Node K, Komamura K, Minamino T, Inoue M, Hori M, Kamada T (1995): Evidence for nitric oxide generation in the cardiomyocytes: its augmentation by hypoxia. J Mol Cell Cardiol 27:2149-54. 16. Kositprapa C, Zhang B, Berger S, Canty JM, Jr., Lee TC (2000): Calpain-mediated proteolytic cleavage of troponin I induced by hypoxia or metabolic inhibition in cultured neonatal cardiomyocytes. Mol Cell Biochem 214:47-55. 17. Laird DW, Puranam KL, Revel JP (1991): Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1):67-72. 18. Lampe PD, Lau AF (2000): Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205-15. 19. Lau AF, Hatch-Pigott V, Crow DS (1991): Evidence that heart connexin43 is a phosphoprotein. J Mol Cell Cardiol 23:659-63. 20. Matesic DF, Rupp HL, Bonney WJ, Ruch RJ, Trosko JE (1994): Changes in gap-junction permeability, phosphorylation, and number mediated by phorbol ester and non-phorbol-ester tumor promoters in rat liver epithelial cells. Mol Carcinog 10:226-36. 21. Monje P, Boland R (1999): Characterization of membrane estrogen binding proteins from rabbit uterus. Mol Cell Endocrinol 147:75-84. 22. Murdoch FE, Gorski J (1991): The role of ligand in estrogen receptor regulation of gene expression. Mol Cell Endocrinol 78:C103-8. 23. Musil LS, Cunningham BA, Edelman GM, Goodenough DA (1990): Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol 111:2077-88. 24. Musil LS, Goodenough DA (1991): Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357-74. 25. Nuedling S, Kahlert S, Loebbert K, Meyer R, Vetter H, Grohe C (1999): Differential effects of 17beta-estradiol on mitogen-activated protein kinase pathways in rat cardiomyocytes. FEBS Lett 454:271-6. 26. Pirolo JS, Allen DG (1986): Assessment of techniques for preventing glycolysis in cardiac muscle. Cardiovasc Res 20:837-44. 27. Rodrigo GC, Lawrence CL, Standen NB (2002): Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion. J Mol Cell Cardiol 34:555-69. 28. Ruehlmann DO, Steinert JR, Valverde MA, Jacob R, Mann GE (1998): Environmental estrogenic pollutants induce acute vascular relaxation by inhibiting L-type Ca2+ channels in smooth muscle cells. Faseb J 12:613-9. 29. Saez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL (1997): Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131-45. 30. Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003): Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. Faseb J 17:1355-7. 31. Sugishita K, Li F, Su Z, Barry WH (2003): Anti-oxidant effects of estrogen reduce [Ca(2+)](i) during metabolic inhibition. J Mol Cell Cardiol 35:331-6. 32. Sylvia VL, Hughes T, Dean DD, Boyan BD, Schwartz Z (1998): 17beta-estradiol regulation of protein kinase C activity in chondrocytes is sex-dependent and involves nongenomic mechanisms. J Cell Physiol 176:435-44. 33. Wellman GC, Bonev AD, Nelson MT, Brayden JE (1996): Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca(2+)-dependent K+ channels. Circ Res 79:1024-30. 34. White RL, Doeller JE, Verselis VK, Wittenberg BA (1990): Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. J Gen Physiol 95:1061-75. 35. Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM, Medina FA, Wyckoff JB, Combs TP, Lisanti MP (2003): Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162:2059-68. 36. Wu JC, Chung TH, Tseng YZ, Wang SM (1999): N-cadherin/catenin-based costameres in cultured chicken cardiomyocytes. J Cell Biochem 75:93-104. 第二章 1. Barp J, Araujo AS, Fernandes TR, Rigatto KV, Llesuy S, Bello-Klein A, Singal P (2002): Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res 35:1075-81. 2. Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004): Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol 14:650-8. 3. Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RGW, Shaul PW (2000): Estrogen Receptor {alpha} and Endothelial Nitric Oxide Synthase Are Organized Into a Functional Signaling Module in Caveolae. Circ Res 87:44e-52. 4. Chung TH, Wang SM, Chang YC, Chen YL, Wu JC (2006): 18β-Glycyrrhetinic acid promotes Src interaction with connexin43 in rat cardiomyocytes. J Cell Biochem (in press) 5. Chung TH, Wang SM, Wu JC (2004): 17beta-estradiol reduces the effect of metabolic inhibition on gap junction intercellular communication in rat cardiomyocytes via the estrogen receptor. J Mol Cell Cardiol 37:1013-22. 6. Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP (2003): Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457-74. 7. Couet J, Sargiacomo M, Lisanti MP (1997): Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429-38. 8. Dan P, Cheung JCY, Scriven DRL, Moore EDW (2003): Epitope-dependent localization of estrogen receptoralpha , but not -beta , in en face arterial endothelium. Am J Physiol Heart Circ Physiol 284:H1295-1306. 9. Giepmans BN, Hengeveld T, Postma FR, Moolenaar WH (2001a): Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication. J Biol Chem 276:8544-9. 10. Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001b): Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11:1364-8. 11. Grohe C, Kahlert S, Lobbert K, Stimpel M, Karas RH, Vetter H, Neyses L (1997): Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107-12. 12. Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, Jo I (1999): Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem Biophys Res Commun 263:257-62. 13. Kiss AL, Turi A, Mullner N, Kovacs E, Botos E, Greger A (2005): Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and its effect on the oestrogen receptor localisation: an in vivo study. Mol Cell Endocrinol 245:128-37. 14. Lampe PD, Lau AF (2000): Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205-15. 15. Li S, Couet J, Lisanti MP (1996): Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182-90. 16. Li W, Hertzberg EL, Spray DC (2005): Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J Biol Chem 280:7941-8. 17. Lin R, Warn-Cramer BJ, Kurata WE, Lau AF (2001): v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J Cell Biol 154:815-27. 18. Musil LS, Goodenough DA (1991): Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357-74. 19. Nuedling S, Kahlert S, Loebbert K, Doevendans PA, Meyer R, Vetter H, Grohe C (1999): 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc Res 43:666-74. 20. Ratajczak P, Damy T, Heymes C, Oliviero P, Marotte F, Robidel E, Sercombe R, Boczkowski J, Rappaport L, Samuel JL (2003): Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57:358-69. 21. Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER (2002): ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16:100-15. 22. Rybin VO, Grabham PW, Elouardighi H, Steinberg SF (2003): Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol 285:H325-32. 23. Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000): Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447-57. 24. Rybin VO, Xu X, Steinberg SF (1999): Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation. Circ Res 84:980-8. 25. Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP (1999): Caveolin-1 Potentiates Estrogen Receptor alpha (ERalpha ) Signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J. Biol. Chem. 274:33551-33556. 26. Schubert AL, Schubert W, Spray DC, Lisanti MP (2002): Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry 41:5754-64. 27. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP (1996): Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160-5. 28. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996): Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle. J. Biol. Chem. 271:2255-2261. 29. Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Tada M, Hori M (1999): Functional role of c-Src in gap junctions of the cardiomyopathic heart. Circ Res 85:672-81. 30. Wang X, Abdel-Rahman AA (2002): Estrogen modulation of eNOS activity and its association with caveolin-3 and calmodulin in rat hearts. Am J Physiol Heart Circ Physiol 282:H2309-15. 31. Williams TM, Lisanti MP (2004): The caveolin proteins. Genome Biol 5:214. 結論 1. Chung TH, Wang SM, Chang YC, Chen YL, Wu JC (2006): 18β-Glycyrrhetinic acid promotes Src interaction with connexin43 in rat cardiomyocytes. J Cell Biochem (in press) 2. Clarke CH, Norfleet AM, Clarke MS, Watson CS, Cunningham KA, Thomas ML (2000): Perimembrane localization of the estrogen receptor alpha protein in neuronal processes of cultured hippocampal neurons. Neuroendocrinology 71:34-42. 3. Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F (2006): Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. Faseb J 20:705-7. 4. Grohe C, Kahlert S, Lobbert K, Stimpel M, Karas RH, Vetter H, Neyses L (1997): Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107-12. 5. Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y, Nakamura H, Matsuzaki M, Choi BY, Bae SW, You CW, Han KH, Park JE, Knoll R, Hoshijima M, Chien KR, Kimura A (2004): Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44:2192-201. 6. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997): Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863-70. 7. Li W, Hertzberg EL, Spray DC (2005): Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J Biol Chem 280:7941-8. 8. Marquez DC, Pietras RJ (2001): Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells. Oncogene 20:5420-30. 9. Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (1998): Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365-8. 10. Nuedling S, Kahlert S, Loebbert K, Doevendans PA, Meyer R, Vetter H, Grohe C (1999): 17 Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc Res 43:666-74. 11. Nuedling S, Karas RH, Mendelsohn ME, Katzenellenbogen JA, Katzenellenbogen BS, Meyer R, Vetter H, Grohe C (2001): Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Lett 502:103-8. 12. Parton RG, Way M, Zorzi N, Stang E (1997): Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137-54. 13. Saez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL (1997): Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131-45. 14. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP (1996): Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160-5. 15. Toran-Allerand CD, Guan X, MacLusky NJ, Horvath TL, Diano S, Singh M, Connolly ES, Jr., Nethrapalli IS, Tinnikov AA (2002): ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J Neurosci 22:8391-401. 16. Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Tada M, Hori M (1999): Functional role of c-Src in gap junctions of the cardiomyopathic heart. Circ Res 85:672-81. 17. Vaghy PL, Fang J, Wu W, Vaghy LP (1998): Increased caveolin-3 levels in mdx mouse muscles. FEBS Lett 431:125-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34265 | - |
| dc.description.abstract | 動情素能減少缺血再灌流時心肌組織心律不整的發生,為測試動情素影響間隙接合以維持心肌細胞的同步收縮與代謝平衡的假說,我們在培養的新生大鼠心肌細胞利用氰化物抑制粒線體有氧呼吸,並以碘乙酸鈉抑制無氧醣解作用,以細胞內代謝性抑制的模式模擬系統缺血的情形,探討動情素對心肌細胞間隙接合的影響。以微量注射Lucifer yellow的方式探討間隙接合之功能,發現代謝性抑制可以顯著地降低心肌細胞間染劑偶合為控制組的8.5% ± 0.6%,若預先以17β雌二醇處理,則心肌細胞以劑量依賴的方式增加細胞間染劑偶合至控制組的76% ± 15% (EC50 = 0.41 µM)。為了探討動情素受體是否參與動情素對細胞間隙接合功能之影響,我們發現以無效空間異構物17α雌二醇並無法取代17β雌二醇對代謝性抑制所引起的細胞間染劑偶合的效應。此外,以動情素受體的拮抗物tamoxifen合併處理,則可以抵消17β雌二醇的效應。我們也發現17β雌二醇-牛血清蛋白-FITC可以、但牛血清蛋白-FITC則無法標示心肌細胞表面,顯示心肌細胞表面可能具有膜動情素受體。雙重免疫螢光染色顯示代謝性抑制會造成細胞間隙接合上堆積大量的去磷酸化Cx43,而預先以17β雌二醇處理則可以避免代謝性抑制引起細胞間隙接合上堆積去磷酸化的Cx43。以Lucifer yellow微量注射後的心肌細胞進行雙重免疫螢光染色的結果顯示,17β雌二醇會改善心肌細胞因代謝性抑制造成染劑偶合降低的情形,同時也使細胞間隙接合上去磷酸化的Cx43減少,而絲氨酸368磷酸化的Cx43 (Ser368Cx43)則增加。代謝性抑制會造成心肌細胞的Ser368Cx43下降,若以17β雌二醇預先處理代謝性抑制的心肌細胞則可以顯著地增加Ser368Cx43的量。若以蛋白質激酶C的抑制劑chelerythrine處理,則可以阻止前述17β雌二醇造成代謝性抑制下心肌細胞Ser368Cx43的增加,暗示17β雌二醇可能使蛋白質激酶C活化。由於內皮細胞脂筏蛋白Cav1在膜動情素受體所引發之快速訊息作用中扮演重要的角色,我們進一步收集心肌細胞均質液經高速離心與電泳分離後,以Cx43、ERα與肌肉型脂筏蛋白Cav3的抗體進行免疫轉漬反應。結果發現在清潔劑(Tx)不可溶分離液內的Cx43以Cx43-P2與Cx43-P1為主,在Tx可溶分離液則以Cx43-P1與Cx43-P0為主。而ERα與Cav3在Tx不可溶或Tx可溶分離液內均有反應。以蔗糖梯密度離心法進行上述蛋白質之分布分析,結果發現Cav3主要分布在5%至35%非連續蔗糖梯密度溶液之脂筏界面所在的第三、四、五分離管,Cx43的分布則涵蓋第三至第七分離管,而ERα則平均分布在所有分離管,這顯示部份的ERαCav3共同出現於脂筏界面分離管中。不具膜透性之17β雌二醇-牛血清蛋白、ERα及Cav3抗體的免疫螢光染色,進一步證實心肌細胞具有特定之膜動情素受體。代謝性抑制造成細胞內p-Src活性增加、使Cx43的酪氨酸265 (Cx43Y265)與Cav3酪氨酸磷酸化並使Cav3從脂筏中脫落。免疫沉澱分析顯示,代謝性抑制會減弱ERα與Cav3彼此間的連結。雙重免疫螢光染色的共軛焦顯微鏡觀察顯示,有部分的ERα與Cav3同位分布於細胞膜的表面;以Mβcd處理會瓦解ERα與Cav3在細胞膜表面的同位分布,顯示二者相連並共存於脂筏。除了有部份的Cx43與PKCε在心肌細胞的細胞相接處同位分布外,也有少部分的Cx43和Cav3在細胞相接處同位分布,而Mβcd處理卻不影響Cx43與Cav3在細胞相接處的同位分布。免疫沉澱分析則進一步顯示17β雌二醇會防止代謝性抑制所引起的p-Src與Cx43之間的連結,並促使p-PKCε與Cx43的連結。綜合以上的結果,我們推測心肌細胞ERα與Cav3相連共存於脂筏,代謝性抑制會使Cx43去磷酸化、Cx43Y265磷酸化及p-PKCε與Cx43的連結減少,並抑制細胞間隙接合的功能。17β雌二醇降低代謝性抑制所引起細胞間隙接合功能下降之可能的作用機制是在代謝性抑制之下Cav3會從脂筏中脫落,Cav3一旦分離之後ERα就不再受Cav3抑制,此時17β雌二醇能快速活化ERα,並活化鄰近的蛋白質激酶Cε,進而使Ser368Cx43增加以維持Cx43的磷酸化狀態,另一方面活化的ERα也可能阻礙代謝性抑制所引起的p-Src與Cx43的連結,進而降低代謝性抑制所造成細胞間隙接合功能的抑制效果。 | zh_TW |
| dc.description.abstract | This study was set to test the hypothesis that 17β-estradiol (E2) regulates the coordination of cell-to-cell events in cardiomyocytes by affecting gap junction intercellular communication (GJIC). The effects of E2 on GJIC were assessed by Lucifer yellow dye coupling in cultured neonatal rat cardiomyocytes after metabolic inhibition (MI) using potassium cyanide and sodium iodoacetate. MI significantly reduced dye coupling of cardiomyocytes to 8.5% ± 0.6% of control levels, and pretreatment with E2, but not its inactive isomer 17β-estradiol, dose-dependently (EC50 = 0.41 µM) increased the dye coupling up to 76% ± 15% of control levels. The effect of E2 on MI-induced dye uncoupling was abolished by tamoxifen, a potent estrogen receptor (ER) antagonist. The ligand, E2-BSA-FITC, labeled the cardiomyocyte surface, whereas BSA-FITC did not, suggesting the presence of membrane-associated E2 receptors. Double immunofluorescence microscopy showed that MI-induced the accumulation of non-phosphorylated Cx43 at the gap junction and that this was prevented by E2 pretreatment. Labeling of Lucifer yellow-microinjected cardiomyocytes with antibodies specific for serine368-phosphorylated Cx43 (Ser368Cx43) or non-phosphorylated Cx43 (Cx43-NP) confirmed that E2 reduced the MI-induced inhibition of dye coupling and accumulation of Cx43-NP concomitant with the reappearance of Ser368Cx43 at the gap junction. MI caused a decrease in Ser368Cx43 protein levels, and pretreatment with E2 significantly increased the levels of Ser368Cx43. Inhibition of protein kinase C (PKC) with chelerythrine blocked the E2-induced increase of Ser368Cx43 levels in MI-treated cardiomyocytes. There is evidence showing that caveolin-1 potentiates nongenomic effects of ERα in endothelial cell. Triton-X-100 (Tx) extraction and immunoblot analyses were used to determine the subcellular distribution of Cx43 isoforms, Cav3 (muscle specific caveolae marker), and ERα in cardiomyocytes. While Cx43-P2 and -P1 were detected in Tx-insoluble fraction and Cx43-P1 and -P0 were detected in Tx-soluble fraction, ERαand Cav3 were detected in both Tx-insoluble and -soluble fractions. Cardiomyocyte lysates were further fractionated in a 5% to 40% discontinuous sucrose gradient by centrifugation. Cav3 was detected at the interface of lipid raft in fractions 3 to 5 of the discontinuous sucrose gradient and Cx43 was detected in fractions 3 to 7. In contrast, ERα was recovered from all fractions of the discontinuous sucrose gradient, indicating a wide distribution of ERα in cardiomyocytes. Labeling of cardiomyocytes with membrane-impermeable E2-BSA ligands combined immunolabeling of Cav3 confirmed the presence of membrane binding sites of E2 in cardiomyocytes. Confocal microscopy further demonstrated a partial co-localization of ERα and Cav3 on the dorsal surface of cardiomyocytes and this co-distribution of ERα and Cav3 was abolished by treatment of 5 mM MβCD. MI induced an increase in the levels of p-Src and tyrosine phosphorylation of Cx43. Immunoprecipitation using anti-p-Src and anti-tyrosine265-phosphorylated Cx43 (Cx43Y265) antibodies showed that MI increased the association between p-Src and Cx43Y265. MI also increased the association between p-Src and Cav3 and tyrosine phosphorylation of Cav3, which resulted in the dissociation of Cav3 from caveolae in cardiomyocytes. Double immunofluorescence microscopy also showed that Cx43 was colocalized with PKCε at gap junction. Immunoprecipitation further demonstrated that MI decreased the association between Cx43 and p-PKCε and the MI-induced dissociation of Cx43 and p-PKCε was prevented by treatment of E2 before MI. In conclusion, E2 may elicit an ERα-mediated signaling pathway in MI-treated cardiomyocytes by changing the distribution of tyrosine-phosphorylated Cav3 and its association with ERα via a caveolae-associated signaling mechanism. The activated ERα in cardiomyocytes may activate PKCε which, in turn, attenuates the inhibitory effect of MI on GJIC by affecting the phosphorylation status of Cx43. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:00:31Z (GMT). No. of bitstreams: 1 ntu-95-D89446001-1.pdf: 2980614 bytes, checksum: 1f50a88f4f3551bd45e5c0986b1bd9ff (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 誌謝 II
中文摘要 III ABSTRACT V 英文縮寫與全名對照表 VII 文獻回顧 1 研究目的及步驟 8 第一章 動情素在代謝性抑制下對大鼠心肌細胞間隙接合功能之影響 15 第一節 摘要 16 第二節 序論 17 第三節 材料與方法 19 第四節 結果 24 第五節 討論 29 第六節 結論 32 第七節 參考文獻 33 圖及圖片說明 37 第二章 脂筏蛋白CAVEOLIN-3與動情素受體在大鼠心肌細胞間隙接合功能調控之角色探討 59 第一節 摘要 60 第二節 序論 61 第三節 材料與方法 64 第四節 結果 69 第五節 討論 74 第六節 結論 78 第七節 參考文獻 79 圖及圖片說明 83 結論與未來展望 108 模式圖 113 發表文獻 114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 缺血 | zh_TW |
| dc.subject | 間隙接合 | zh_TW |
| dc.subject | 心肌細胞 | zh_TW |
| dc.subject | 代謝性抑制 | zh_TW |
| dc.subject | 膜動情素受體 | zh_TW |
| dc.subject | 脂筏 | zh_TW |
| dc.subject | 脂筏蛋白 | zh_TW |
| dc.subject | Cardiomyocytes | en |
| dc.subject | Gap junction | en |
| dc.subject | Connexin43 | en |
| dc.subject | Metabolic inhibition | en |
| dc.subject | Membrane estrogen receptor | en |
| dc.subject | Lipid raft | en |
| dc.subject | Caveolin-3 | en |
| dc.subject | Src | en |
| dc.subject | Ischemia | en |
| dc.title | 動情素在大鼠心肌細胞間隙接合功能調控之角色探討 | zh_TW |
| dc.title | Studies on the Role of Estrogen on Gap Junction Intercellular Communication in Rat Cardiomyocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王淑美(Seu-Mei Wang),陳玉伶(Yun-Chieh Chang),張繼堯(Chi-Yao Chang),劉鴻文 | |
| dc.subject.keyword | 間隙接合,代謝性抑制,膜動情素受體,脂筏,脂筏蛋白,缺血,心肌細胞, | zh_TW |
| dc.subject.keyword | Gap junction,Connexin43,Metabolic inhibition,Membrane estrogen receptor,Lipid raft,Caveolin-3,Src,Ischemia,Cardiomyocytes, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-06-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
