Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳逸聰(Yit-Tsong Chen)
dc.contributor.authorYi-Han Yangen
dc.contributor.author楊逸涵zh_TW
dc.date.accessioned2021-06-13T05:59:08Z-
dc.date.available2007-07-03
dc.date.copyright2006-07-03
dc.date.issued2006
dc.date.submitted2006-06-27
dc.identifier.citationChapter 1
1. Timp, G. Nanotechnology; Springer-Verlag: New York, 1999.
2. Alivisatos, A. P. Science 1996, 271, 933.
3. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
4. Zheng, B.; Wu, Y. Y.; Yang, P. D.; Liu, J. Adv. Mater. 2002, 14, 122.
5. Wang, Z. L. Adv. Mater. 2003, 15, 432.
6. National Nanotechnology Initiative (from website of http://www.nano.gov/)
7. Microscopy and Histology Catalog, Polysciences, Warrington, PA, 1993-1994.
8. Sunkara, M. K.; Sharma, S.; Miranda, R.; Lian, G.; Dickey, E. C. Appl. Phys. Lett. 2001, 79, 1546.
9. Shalish, I.; Shapira, Y. J. Vac. Sci. technol. B 1999, 17, 166.
10. Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M. P.; Waychunas, G. A.; Banfield, J. F. Geochem. Trans. 2003, 4, 20.
11. Fu, H.; Bellaiche, L. Phys. Rev. Lett. 2003, 91, 257601.
12. Chemistry and Materials Science (from website of http://www-cms.llnl.gov/s-t/nano-semiconductors.html)
13. Kan, S.; Aharoni, A.; Mokari, T.; Banin, U. Faraday Discuss. 2004, 125, 23.
14. Woltersdorf, J.; Nepijko, A. S.; Pippel, E. Surf. Sci. 1981, 106, 64.
15. Zhao, H.; Ning, Y. Gold Bull. 2000, 33, 103.
16. Turkevich, J. Gold Bull. 1985, 18, 86.
17. Faraday, M. Phil Trans. 1857, 147, 145.
18. Deal, B. E. Interface 1976, 6, 18.
19. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252
20. Service, R. F. Science 2001, 293, 782.
21. Schön, J. H.; Meng, H.; Bao, Z. Science 2001, 294, 2138.
22. Meindl, J. D.; Chen, Q.; Davis, J. A. Science 2001, 293, 2044.
23. Lundstrom, M. Science 2003, 299, 210.
24. Feynman, R. P. J. Microelectromechan. Syst. 1992, 1, 1.
25. Haberzettl, C. A. Nanotechnology 2002, 13, R9.
26. Feldheim, D. L.; Keating, C. D. Chem. Soc. Rev. 1998, 27, 1.
27. Capasso, F. Science 1987, 235, 172.
28. Krastchmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
29. Andrievsky, G. V.; Klochkov, V. K.; Karyakina, E. L.; Mchedlov-Petrossyan, N. O. Chem. Phys. Lett. 1999, 300, 392.
30. Iijima, S. Nature 1991, 354, 56.
31. Yuan, L.; Li, T.; Saito, K. Carbon 2003, 41, 1889.
32. Kresge, C. T.; Leonwicz, M. E.; Roth, W. J.; Vartulli, J. C.; Beck, J. S. Nature 1992, 359, 710.
33. Winkler, H.; Birkner, A.; Hagen, V.; Wolf, I.; Schmechel, R.; von Seggern, H.; Fisher, R. A. Adv. Mater. 1999, 11, 1444.
34. Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57.
35. Binning, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930.
36. Harper, T. Nanotechnology 2003, 14, 1.
Chapter 2
1. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.
2. Kittel, C. Introduction to Solid State Physics; 7th ed.; Wiley; New York, 1996.
3. Giacovazzo, C. Fundamentals of Crystallography; Oxford; New York, 1992.
4. Sears, G. W. Acta Metal. 1955, 3, 361.
5. Givargizov, E. I. Highly Anisotropic Crystals, Reidel, D. Dordrecht, 1986.
6. Bogels, G.; Meekes, H.; Bennema, P.; Bollen, D. J. Phys. Chem. B 1999, 103, 7577.
7. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
8. Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625.
9. Liu, Y.; Zheng, C.; Wang, W.; Yin, C.; Wang, G. Adv. Mater. 2001, 13, 1883.
10. Yin, Y.; Zhang, C.; Xia, Y. Adv. Func. Mater. 2002, 12, 293.
11. Zhang, Y.; Wang, N.; Gao, S.; He, R.; Miao, S.; Liu, J.; Zhang, X. Chem. Mater. 2002, 14, 3564.
12. Wolfe, E. G..; Coskren, T. D. J. Am. Chem. Soc. 1965, 48, 279.
13. Hayashi, S.; Saito, H. J. Cryst. Growth 1974, 24/25, 345.
14. Shi, W.; Peng, H.; Zheng, Y.; Wang, N.; Shang, N.; Pan, Z.; Lee, C.; Lee. S. Adv. Mater. 2000, 12, 1343.
15. Yang, P.; Lieber, C. M. Science 1996, 273, 1836.
16. Gates, B.; Yin, Y.; Xia, Y. J. Am. Chem. Soc. 2000, 122, 12582.
17. Wunderlich, B.; Shu, H. –C. J. Cryst. Growth 1980, 48, 227.
18. Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Nano Lett. 2002, 2, 165.
19. Govender, K.; Boyle, D. S.; O’Brien, P.; Brinks, D.; West, D.; Coleman, D. Adv. Mater. 2002, 12, 1221.
20. Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186.
21. Urban, J. J.; Spanier, J. E.; Ouyang, L.; Yun, W. S.; Park, H. Adv. Mater. 2003, 15, 423.
22. Liao, H. W.; Wang, Y. F.; Liu, X. M.; Li, Y. D.; Qian, Y. T. Chem. Mater. 2000, 12, 2819.
23. Wagner, R. S.; Ellis, W. C.; Jackson, K. A.; Arnold, S. M. J. Appl. Phys. 1964, 35, 2993.
24. Wagner, R. S. in Whisker Technology, ed. by Levitt, A. P.; Wiley, New York; p. 47; 1970.
25. Wagner, R. S.; Ellis, W. C. Trans. Metal. Soc. AIME 1965, 233, 1053.
26. Lieber, C. M. Solid State Commun. 1998, 107, 106.
27. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
28. Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.
29. Yu, D. P.; Bai, Z. G.; Ding, Y.; Hang, Q. L.; Zhang, H. Z.; Wang, J. J.; Zou, Y. H.; Qian, W.; Xoing, G. C.; Zhou, H. T.; Feng, S. Q. Appl. Phys. Lett. 1998, 72, 3458.
30. Yu, D. P.; Lee, C. S.; Bello, I.; Sun, X. S.; Tang, Y.; Zhou, G. W.; Bai, Z. G.; Feng, S. Q. Solid State Commun. 1998, 105, 403.
31. Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
32. Givargizov, E. I. J. Vac. Sci. Technol. B 1993, 11, 449.
33. Gudiksen, M. S.; Wang, J.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 4062.
34. Gudiksen, M. S.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 8801.
35. Chen, C. C.; Yeh, C. C. Adv. Mater. 2000, 12, 738.
36. Yu, D. P.; Hang, Q. L.; Ding, Y.; Zhang, H. Z.; Bai, Z. G.; Wang, J. J.; Zou, Y. H.; Qian, W.; Xoing, G. C.; Feng, S. Q. Appl. Phys. Lett. 1998, 73, 3076.
37. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gobbons, P. C.; Buhro, W. E. Science 1995, 270, 1971.
38. Buhro, W. E. Polyhedron 1994, 13, 1131.
39. Yu, H.; Buhro, W. E. Adv. Mater. 2003, 15, 416.
40. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P. Nature 1989, 337, 147.
41. Fleisher, R. L.; Price, P. B.; Walker, R. M. Nuclear Tracks in Solids, University of California Press, Berkeley, CA, 1975.
42. Tonucci, R. J.; Justus, B. L.; Campillo, A. J.; Ford, C. E. Science 1992, 258, 783.
43. Possin, G. E. Rev. Sci. Instrum. 1970, 41, 772.
44. Enzel, P.; Zoller, J. J.; Bein, T. Chem. Commun. 1992, 633.
45. Ajayan, P. M.; Stephan, O.; Redlich, P.; Colliex, C. Nature 1995, 375, 564.
46. Despic, A.; Parkhuitik, V. P. Modern Aspects of Electrochemistry, Vol. 20, Plenum, New York, 1989.
47. AlMawiawi, D.; Coombs, N.; Moskovits, M. J. Appl. Phys. 1991, 70, 4421.
48. Foss, C. A.; Tierney, M. J.; Martin, C. R. J. Phys. Chem. 1992, 96, 9001.
49. Frenot, A.; Chronakis, I. S. Current Opin. Colloid Interf. Sci. 2003, 8, 64.
50. Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216.
51. Fong, H.; Liu, W.; Wang, C. S.; Vaia, R. A. Polymer 2002, 43, 775.
52. Mathews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Biomacromolecules 2002, 3, 232.
53. Li, D.; Xia, Y. Nano Lett. 2003, 3, 555.
54. Larsen, G.; Velerde-Ortiz, R.; Minchow, K.; Barrero, A.; Loscertales, I. G. J. Am. Chem. Soc. 2003, 125, 1154.
55. Kurihara, K.; Iwadate, K.; Namatsu, H.; Nagase, M.; Murase, K. J. Vac. Sci. Technol. B 1995, 12, 2170.
56. Liu, H. I.; Biegelsen, D. K.; Ponce, F. A.; Johnson, N. M.; Pease, R. F. Appl. Phys. Lett. 1994, 64, 1383.
57. Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823.
58. Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 1426.
59. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy; Plenum; New York; 1996.
60. Heimendahl, M. von Electron Microscopy of Materials: An Introduction; Academic Press, New York, p. 1, 1980.
61. Cullity, B. D.; Stock, S. R. Elements of X-Ray Diffraction, 3rd edition, Prentice Hill, Upper Saddle River, New Jersey, 2001.
62. Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425.
63. Wang, Z. L.; Poncharal, P.; de Herr, W. A. J. Phys. Chem. Solids 2000, 61, 1025.
64. Poncharal, P.; Wang, Z. L.; Ugate, D.; de Heer, W. A. Science 1999, 283, 1516.
65. Wang, Z. L. Adv. Mater. 2000, 12, 1295.
66. Segmuller, A.; Murakami, M. Analytical Techniques for Thin Films, eds. Tu, K. N.; Rosenberg, R., Academic Press, San Diego, CA, p.143, 1988.
67. Birks, L. S.; Friedman, H. J. Appl. Phys. 1946, 17, 687.
Chapter 3
1. Alivisatos, A. P. Science 1996, 271, 933.
2. Baron, T.; Martin, F.; Mur, P.; Wyon, C.; Dupuy, M.; Busseret, C.; Souifi, A.; Guillot, G. Appl. Surf. Sci. 2000, 164, 29.
3. Park, N.-M.; Kim, S. H.; Sung, G. Y.; Park, S.-J. Chem. Vap. Deposition 2000, 8, 254.
4. Liu, H. I.; Biegeisen, D. K.; Ponce, F. A.; Johnson, N. M.; Pease, R. F. W. Appl. Phys. Lett. 1994, 64, 1383.
5. Wakayama, Y.; Tanaka, S. J. Cryst. Growth 1997, 181, 304.
6. Ono, T.; Saitoh, H.; Esashi, M. Appl. Phys. Lett. 1997, 70, 1852.
7. Chen, Y. F.; Lin, L. Y.; Shen, J. L.; Liu, D. W. J. Appl. Phys. 1992, 72, 647.
8. Persson, A. I.; Larsson, M. W.; Stenström, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Nature Mater. 2004, 3, 677.
9. Sanders, G. D.; Chang, Y. C. Phys. Rev. B 1992, 45, 9202.
10. Lee, E. J. H.; Ribeiro, C.; Giraldi, T. R.; Longo, E.; Leite, E. R.; Varela, J. A. Appl. Phys. Lett. 2004, 84, 1745.
11. Zhao, X.; Wei, C. M.; Yang, L.; Chou, M. Y. Phys. Rev. Lett. 2004, 92, 236805.
12. Scamarcio, G.; Lugará, M.; Manno, D. Phys. Rev. B 1992, 45, 792.
13. Wang, N.; Zhang, Y. F.; Tang, Y. H.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 1998, 73, 3902.
14. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T. Phys. Rev. B 1998, 58, 16024.
15. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. Chem. Phys. Lett. 1999, 299, 237.
16. Tang, Y. H.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2000, 328, 346.
17. Zhang, Y. F.; Tang, Y. H.; Wang, N.; Yu, D. P.; Lee, C. S.; Bello, I.; Lee, S. T. Appl. Phys. Lett. 1998, 72, 1835.
18. Wang, N.; Tang, Y. H.; Zhang, Y. F.; Yu, D. P.; Lee, C. S.; Bello, I.; Lee, S. T. Chem. Phys. Lett. 1998, 283, 368.
19. Zhang, Y. F.; Tang, Y. H.; Wang, N.; Lee, C. S.; Bello, I.; Lee, S. T. J. Cryst. Growth 1999, 197, 136.
20. Tang, Y. H.; Zhang, Y. F.; Wang, N.; Shi, W. S.; Lee, C. S.; Bello, I.; Lee, S. T. J. Vac. Sci. Technol. B 2001, 19, 317.
21. Lee, S. T.; Zhang, Y. F.; Wang, N.; Tang, Y. H.; Bello, I.; Lee, C. S.; Chung, Y. W. J. Mater. Res. 1999, 14, 4503.
22. Fan, X. H.; Xu, L.; Li, C. P.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2001, 334, 229.
23. Shi, W. S.; Peng, H. Y.; Zheng, Y. F.; Wang, N.; Shang, N. G.; Pan, Z. W.; Lee, C. S.; Lee, S. T. Adv. Mater. 2000, 12, 1343.
24. Zhang, Y. F.; Tang, Y. H.; Lam, C.; Wang, N.; Lee, C. S.; Bello, I.; Lee, S. T. J. Cryst. Growth 2000, 212, 115.
25. Li, C. P.; Sun, X. H.; Wong, N. B.; Lee, C. S.; Lee, S. T.; Teo, B. K. Chem. Phys. Lett. 2002, 365, 22.
26. Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.
27. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
28. Duan, X.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 188.
29. Cui, Y.; Leiber, C. M. Science 2001, 291, 851.
30. Hu, J.; Ouyang, M.; Yang, P.; Lieber, C. M. Nature 1999, 399, 48.
31. Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J.; Lieber, C. M. Appl. Phys. Lett. 2001, 78, 2214.
32. Yu, D. P.; Lee, C. S.; Bello, I.; Sun, X. S.; Tang, Y. H.; Zhou, G. W.; Bai, Z. G.; Feng, S. Q. Solid State Commun. 1998, 105, 403.
33. Yu, D. P.; Bai, Z. G.; Ding, Y.; Hang, Q. L.; Zhang, H. Z.; Wang, J. J.; Zou, Y. H.; Qian, W.; Xiong, G. C.; Zhou, H. T.; Feng, S. Q. Appl. Phys. Lett. 1998, 72, 3458.
34. Feng, S. Q.; Yu, D. P.; Zhang, H. Z.; Bai, Z. G.; Ding, Y. J. Cryst. Growth 2000, 209, 513.
35. Zhou, G.; Zhang, Z.; Yu, D. P. J. Cryst. Growth 1999, 197, 129.
36. Yu, D. P.; Bai, Z. G.; Wang, J. J.; Zou, Y. H.; Qian, W.; Fu, J. S.; Zhang, H. Z.; Ding, Y.; Xiong, G. C.; You, L. P.; Xu, J.; Feng, S. Q. Phys. Rev. B 1999, 59, 2498.
37. Zhou, G. W.; Zhang, Z.; Bai, Z. G.; Feng, S. Q.; Yu, D. P. Appl. Phys. Lett. 1998, 73, 677.
38. Zhang, H. Z.; Yu, D. P.; Ding, Y.; Bai, Z. G.; Hang, Q. L.; Feng, S. Q. Appl. Phys. Lett. 1998, 73, 3396.
39. Bai, Z. G.; Yu, D. P.; Wang, J. J.; Zou, Y. H.; Qian, W.; Fu, J. S.; Feng, S. Q.; Xu, J.; Lou, L. P. Mater. Sci. Eng. B 2000, 72, 117.
40. Xing, Y. J.; Yu, D. P.; Xi, Z. H.; Xue, Z. Q. Chin. Phys. 2002, 11, 1047.
41. Xing, Y. J.; Xi, Z. H.; Yu, D. P.; Hang, Q. L.; Yan, H. F.; Feng, S. Q.; Xue, Z. Q. Chin. Phys. Lett. 2002, 19, 240.
42. Yan, H. F.; Xing, Y. J.; Hang, Q. L.; Yu, D. P.; Wang, Y. P.; Xu, J.; Xi, Z. H.; Feng, S. Q. Chem. Phys. Lett. 2000, 323, 224.
43. Wagner, R. S.; Ellis W. C. Appl. Phys. Lett. 1964, 4, 89.
44. In Whisker Technology; Levitt, A. P., Ed.; Wiley-Interscience: New York, 1970; pp. 47-119.
45. Seddon, E. A.; Seddon, K. R. The Chemistry of Ruthenium; Elsevier: Amsterdam, 1984.
46. Harris, D. C. Quantitative Chemical Analysis; 4th ed.; W. H. Freeman and Company: New York, 1995.
47. Ishida, S.; Iwamoto, Y.; Kabuto, C.; Kira M. Nature 2003, 421, 725.
48. Ma, X. L.; Zhu, Y. L.; Zhang, Z. Phil. Mag. Lett. 2002, 82, 461.
49. Boehm, H. P. Carbon 1973, 11, 583.
50. Dimitriadis, C. A.; Stoemenos, J.; Coxon, P. A.; Friligkos, S.; Antonopoulos, J.; Economou, N. A. J. Appl. Phys. 1993, 73, 8402.
51. In Silicon-Based Materials and Devices; Nalwa, H. S., Ed.; Academic Press: San Diego, 2001; Vol. 2 , pp. 193-223.
52. Yoshida, T.; Takeyama, S.; Yamada, Y.; Mutoh, K. Appl. Phys. Lett. 1996, 68, 1772.
53. Gupta, R.; Xiong, Q.; Adu, C.K.; Kim, U.J.; Eklund, P.C. Nano Lett. 2003, 3, 627.
54. Adu, K. W.; Gutiérrez, H. R.; Kim, U. J.; Sumanasekera, G. U.; Eklund, P. C. Nano. Lett. 2005, 5, 409.
55. Wei, D.; Li, L.; Li, B.; Zhang, S. Chin. Sci. Bull. 2000, 45, 1351.
56. Hayashi, S.; Kanamori, H. Phys. Rev. B 1983, 26, 7079.
57. Richter, H.; Wang, Z. P.; Ley, L. Solid State Commun. 1981, 39, 625.
58. Campbell, I. H.; Fauchet, P. M. Solid State Commun. 1986, 58, 739.
59. Tubino, R.; Piseri, L.; Zerbi, G. J. Chem. Phys. 1972, 56, 1022.
60. Zyubin, A. S.; Glinka, Yu. D.; Mebel, A. M.; Lin, S. H.; Hwang, L. P.; Chen, Y. T. J. Chem. Phys. 2002, 116, 281.
61. Glinka, Yu. D.; Lin, S. H.; Hwang, L. P.; Chen, Y. T. J. Phys. Chem. B 2000, 104, 8652.
62. Glinka, Yu. D.; Zyubin, A. S.; Mebel, A. M.; Lin, S. H.; Hwang, L. P.; Chen, Y. T. Eur. Phys. J. D 2001, 16, 279.
63. Yu, D. P.; Hang, Q. L.; Ding, Y.; Zhang, H. Z.; Bai, Z. G.; Wang, J. J.; Zou, Y. H.; Qian, W.; Xiong, G. C.; Feng, S. Q. Appl. Phys. Lett. 1998, 73, 3076.
64. Li, M.; Lu, M.; Kong, L.; Wang, C.; Guo, X.; Li, H. Chin. Phys. Lett. 2002, 19, 1703.
Chapter 4
1. Iijima S. Nature 1991, 354, 56.
2. Morales, A.; Lieber, C. M. Science 1998, 279, 208.
3. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
4. Wang, Z. L. Adv. Mater. 2003, 15, 432.
5. Zhong, Z.; Qian, F.; Wang, D.; Lieber, C. M. Nano Lett. 2003, 3, 343.
6. Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Science 1999, 283, 512.
7. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science 1995, 270, 1791.
8. Zhu, Y. Q.; Hsu, W. K.; Terrones, M.; Grobbert, N.; Terrones, H.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M. J. Mater. Chem. 1998, 8, 1859.
9. Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F. J. Am. Chem. Soc. 2001, 123, 2791.
10. Pan, Z. W.; Lai, H. L.; Au, F. C. K.; Duan, X. F.; Zhou, W. Y.; Shi, W. S.; Wang, N.; Lee, C. S.; Wong, N. B.; Lee, S. T. Adv. Mater. 2000, 12, 1186.
11. Tremel, W. Angew Chem. Int. Ed. 1999, 38, 2175.
12. Tenne, R. Prog. Inorg. Chem. 2001, 50, 269.
13. Patzke, G. R.; Krumeich, F.; Nesper, R.; Angew. Chem. Int. Ed. 2002, 41, 2446.
14. Konishi, Y.; Okazaki, M.; Toriyama, K. J. Phys. Chem. B 2001, 105, 901.
15. Quobosheane, M.; Santra, S.; Zhang, P.; Tan, W. Analyst 2001, 126, 1274.
16. Jain, T. K.; Roy, I.; De, T. K.; Maitra, A. J. Am. Chem. Soc. 1998, 120, 11092.
17. Chang, H. J.; Chen, Y. F.; Lin, H. P.; Mou, C. Y. Appl. Phys. Lett. 2001, 78, 3791.
18. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
19. Liu,Z. Q.; Xie,S. S.; Sun, L. F.; Tang, D. S.; Zhou, W. Y.; Wang, C. Y.; Liu, W.; Liu, Y. B.; Zou, X. P.; Wang, G.; J. Mater. Res. 2001, 16, 683.
20. Wang, L. Z.; Tomura, S.; Ohashi, F.; Maeda, M.; Suzuki, M.; Inukai, K. J. Mater. Chem. 2001, 11, 1465.
21. Jung, J. H.; Yoshida, K.; Shimizu, T. Langmuir 2002, 18, 8724.
22. Frisch, H. L.; Mark, J. E. Chem. Mater. 1996, 8, 1735.
23. Adachi, M.; Harada, T.; Harada, M. Langmuir 2000, 16, 2376.
24. Adachi, M.; Harada, T.; Harada, M. Langmuir 1999, 15, 7097.
25. Pan, Z. W.; Dai, Z. R.; Ma, C.; Wang, Z. L. J. Am. Chem. Soc. 2002, 124, 1817.
26. Zheng, B.; Wu, Y. Y.; Yang, P. D.; Liu, J. Adv. Mater. 2002, 14, 122.
27. Sharma, S.; Li, H.; Chandrasekaran, H.; Mani, R. C.; Sunkara, M. K. Encyclopedia of Nanoscience and Nanotechnology, ed. by Nalwa, H. S., Vol. 10, p. 327 (American Scientific Publishers, Los Angels, CA 2004).
28. Paulose, M.; Varghess, O. K.; Grimes, C. A. J. Nanosci. Nanotech. 2003, 3, 341.
29. Lee, D. C.; Hanrath, T.; Korgel, B. A. Angew. Chem. Int. Ed. 2005, 44, 3573.
30. Yan, H. F.; Xing, Y. J.; Hang, Q. L.; Yu, D. P.; Wang, Y. P.; Xu, J.; Xi, Z. H.; Feng, S. Q. Chem. Phys. Lett. 2000, 323, 224.
31. Dean, I. A. Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992.
32. Saliba, N.; Parker, D. H.; Koel, B. E. Surf. Sci. 1998, 410, 270.
33. Crljen, Ž.; Šokčević, D.; Brako, R.; Lazić, P. Vacuum 2003, 71, 101.
34. Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Nørskov, J. K. Nature 2004, 427, 426.
35. Oberlin, A.; Endo, M.; Koyama, T. J. Cryst. Growth 1976, 32, 335.
36. Audier, M.; Oberlin, A.; Coulon, M. J. Cryst. Growth 1981, 55, 549.
37. Baird, T.; Fryer, J. R.; Grant, B. Carbon 1974, 12, 591.
38. Shuker, R.; Gamon, R. W.; in Light Scattering in Solids (Flammarion, Paris, 1971), p. 334.
39. Shen, T. D.; Shmagin, I.; Koch, C. C.; Kolbas, R. M.; Fahmy, Y.; Bergman, L.; Nemanich, R. J.; McClure, M. T.; Sitar, Z.; Quan, M. X. Phys. Rev. B 1997, 55, 7615.
40. Galeener, F. L. Phys. Rev. B 1979, 19, 4292.
41. Wang, Y. W.; Liang, C. H.; Meng, G. W.; Peng, X. S.; Zhang, L. D. J. Mater. Chem. 2002, 12, 651.
42. Liang, C. H.; Zhang, L. D.; Meng, G. W.; Wang, Y. W.; Chu, Z. Q. J. Non-Cryst. Solids 2000, 277, 63.
43. Glinka, Yu. D.; Lin, S. H.; Chen, Y. T. Phys. Rev. B 2000, 62, 4733.
44. Zyubin, A. S.; Glinka, Yu. D.; Mebel, A. M.; Lin, S. H.; Hwang, L. P.; Chen, Y. T. J. Chem. Phys. 2002, 116, 281.
45. Glinka, Yu. D.; Lin, S. H.; Hwang, L. P.; Chen, Y. T. J. Phys. Chem. B 2000, 104, 8652.
46. Nishikawa,H.; Shiryama, T.; Kawamura, R.; Ohki, Y.; Nagasawa, K.; Hama, Y. Phys. Rev. B 1992, 45, 586.
47. Chen,Y. Q.; Zhou, Q. T.; Jiang, H. F.; Su, Y.; Xiao, H. H.; Zhu, L. A.; Xu, L. A. Nanotechnology 2006, 17, 1022.
48. Carbonaro, C. M.; Clemente, F.; Corpino, R.; Ricci, P. C.; Anedda, A. J. Phys. Chem. B 2005, 109, 14441.
49. Qin, G. G.; Lin, J.; Duan, J. Q.; Yao, G. Q. Appl. Phys. Lett. 1996, 69, 1689.
50. G. Socrates, in Infrared and Raman Characteristic Group Frequencies (John Wiley & Sons, New York, 3rd edn., 2001), p. 241.

Chapter 5
1. Sun, L. F.; Mao, J. M.; Pan, Z. W.; Chang, B. H.; Zhou, W. Y.; Wang, G.; Qian, L. X.; Xie, S. S. Appl. Phys. Lett. 1999, 74, 644.
2. Niu, J. J.; Sha, J.; Yang, D. R. Physica E 2004, 23, 131.
3. Yang, Y. H.; Wu, S. J.; Chiu, H. S.; Lin, P. I.; Chen, Y. T. J. Phys. Chem. B 2004, 108, 846.
4. Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M. Adv. Mater. 2003, 15, 997.
5. Liu, Z.; Zhang, D.; Han, S.; Li, C.; Tang, T.; Jin, W.; Liu, X.; Lei, B.; Zhou, C. Adv. Mater. 2003, 15, 1754.
6. Arnold, M. S.; Avouris, P.; Pan, Z. W.; Wang, Z. L. J. Phys. Chem. B 2003, 107, 659.
7. Ma, Y. J.; Zhou, F.; Lu, L.; Zhang, Z. Solid State Comm. 2004, 130, 313.
8. Lee, J. –S.; Sim, S. –K.; Min, B.; Cho, K.; Kim, S. W.; Kim, S. J. Cryst. Growth 2004, 267, 145.
9. Liu, Y. K.; Zheng, C. L.; Wang, W. Z.; Yin, C. R.; Wang, G. H. Adv. Mater. 2001, 13, 1883.
10. Xu, C.; Zhao, X.; Liu, S.; Wang, G. Solid State Commun. 2003, 125, 301.
11. Ying, Z.; Wan, Q.; Song, Z. T.; Feng, S. L. Nanotechnology 2004, 15, 1682.
12. Kong, X. H.; Yu, D. P.; Li, Y. D. Chem. Lett. 2003, 32, 100.
13. Abello, L.; Bochu, B.; Gaskov, A.; Koudryavtseva, S.; Lucazeau, G..; Roumyantseva, M. J. Solid State Chem. 1998, 135, 78.
14. Duan, X. F.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
15. Cui, Z.; Meng, G. W.; Huang, W. D.; Wang, G. Z.; Zhang, L. D. Mater. Res. Bull. 2000, 35, 10.
16. Porto, S. P. S.; Fleury, P. A.; Damen, T. C. Phys. Rev. 1967, 154, 522.
17. Abello, L.; Bochu, B.; Gaskov, A.; Koudryavtseva, S.; Lucazeau, G.; Roumyantesva, M. J. Solid State Chem. 1998, 135, 78.
Chapter 6
1. Fahrenbruch, A. L.; Bube, R. H. Fundamentals of Solar Cells, Academic Press, New York, 1983, pp. 9, 75.
2. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Physol. 1954, 25, 676.
3. Reynolds, D. C.; Leies, G.; Antes, L. L.; Marburger, R. E. Phys. Rev. 1954, 96, 533.
4. Green, M. A. High Efficiency Silicon Solar Cells, Trans Tech Publications, Switzerland, 1987.
5. Sinton, R. A.; Swanson, R. M. IEEE Trans. Electronic Device, 1987, ED-34, 2116.
6. Chung, B. C.; Virshup, G. F.; Hikido, S.; Kaminar, N. R. Appl. Phys. Lett. 1989, 55, 1741.
7. Bertness, K. A.; Ristow, M. L.; Hamaker, H. C. 20th IEEE Photovoltaic Specialists Conf. Record, IEEE, New York, 1988, 769.
8. Green, M. A.; Emery, K. Progress in Photovoltaics Research and Applications, John Wiley, New York, 1993, p. 227.
9. Candelario, T. R.; Hester, S. L.; Townsend, T. U.; Shipman, D. J. 22nd IEEE Photovoltaic Specialist Conf. Record, IEEE, New York, 1991, p. 493.
10. Antypas, G. A.; Moon, R. L. J. Electrochem. Soc. 1974, 120, 1574.
11. Nadenau, V.; Braunger, D.; Hariskos, D.; Kaiser, M.; Koble, C.; Ruckh, M.; Schaffer, R.; Schmid, D.; Walter, T.; Zwergart, S.; Schock, H. W. Prog. Photogr. Res. Appl. 1995, 3, 363.
12. Stolt, L.; Bodegard, M.; Kessler, J.; Ruckh, M.; Velthaus, K. O.; Schock, H. W. Proc. 11th Euro. Photovoltaic Solar Energy Conf., Monteux, Harwood Academic, Chur, Switzerland 1993, p. 20.
13. Niki, S.; Fons, P. J.; Yamada, A.; Hellman, O.; Kurafuji, T.; Chichibu, S.; Nakanishi, H. Appl. Phys. Lett. 1996, 69, 647.
14. Tiwari, A. N.; Blunier, S.; Filmoser, M.; Zogg, H.; Schmid, D.; Schock, H. W. Appl. Phys. Lett. 1994, 65, 3347.
15. Takenoshita, H. Sol. Cells 1986, 16, 65.
16. Igarashi, O. J. Cryst Growth 1993, 130, 343.
17. Sagnes, B.; Salesse, A.; Artaud, M. C.; Duchemin, S.; Bougnot, J.; Bougnot, G. J. Cryst. Growth 1992, 124, 620.
18. Malik, M. A.; O’Brien, P.; Revaprasadu, N. Adv. Mater. 1999, 11, 1441.
19. Jiang, T.; Ozin, G. A.; Bedard, R. L. Adv. Mater. 1994, 6, 860.
20. Morris, R. E.; Weigel, S. J. Chem. Soc. Rev. 1997, 26, 309.
21. Tridade, T.; O’Brien, P.; Zhang, X. Chem. Mater. 1997, 9, 523.
22. Kavcar, N. Sol. Energy Mater. Sol. Cells 1998, 52, 183.
23. Mooney, G. D.; Hermann, A. M.; Tuttle, J. R.; Albin, D. S.; Noufi, R. Sol. Cells 1991, 30, 69.
24. Rincón, C.; Márquez, R. J. Phys. Chem. Solids 1999, 60, 1865.
25. Matsushita, H.; Endo, S.; Irie, T. Jpn. J. Appl. Phys. 1992, 31, 18.
26. Roy, S.; Guha, P.; Kundu, S. N.; Hanzawa, H.; Chaudhuri, S.; Pal, A. K. Mater. Chem. Phys. 2002, 73, 24.
27. Neumann, H. Solar Cells 1986, 16, 317.
28. In Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, & Applications; Shay, J. L., Wernick, J. H., Ed.; Pergamon Press: Oxford, 1975; Chap. 4, pp. 110.
29. Yakushev, M. V.; Feofanov, Y.; Martin, R. W.; Tomlinson, R. D.; Mudryi, A. V. J. Phys. Chem. Solids 2003, 64, 2011.
30. Niki, S.; Makita, Y.; Yamada, A.; Obara, A.; Misawa, S.; Igarashi, O.; Aoki, K.; Katsuwada, N. Jpn. J. Appl. Phys. 1994, 33, L500.
31. Zott, S.; Leo, K.; Ruckh, M.; Schock, H. –W. J. Appl. Phys. 1997, 82, 356.
32. Yu, P. W. J. Appl. Phys. 1976, 47, 677.
33. Tanino, H.; Maeda, T.; Fujikake, H.; Nakanishi, H.; Endo, S.; Irie, T. Phys. Rev. 1992, 45, 13323.
34. Wasim, S. M. Solar Cells 1986, 16, 289.
35. Zhang, S. B.; Wei, Su-Huai; Zunger Alex Phys. Rev. Lett. 1997, 78, 4059.
36. Rockett, A.; Birkmire, R. W. J. Appl. Phys. 1991, 70, R81.
37. Kazmerski, L. L. Jpn. J. Appl. Phys. Suppl. 1993, 32/33, 25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34231-
dc.description.abstract由於奈米科技的精進,使得製備奈米等級之材料技術得以成長與更形完備,也更具有不同維度及尺寸上之變化。在本論文中,藉由不同之物理或化學合成方式,能夠合成出不同半導體材料之一維奈米結構,包含有單晶矽奈米線、非晶系二氧化矽奈米管、單晶二氧化錫奈米帶以及單晶銅銦化二硒奈米棒。
以微米尺寸之矽粉末,混合金屬或者二氧化矽粉末作為催化劑,並輔佐以雷射剝蝕法(laser ablation)的技術,可以合成具有直徑尺寸5-40奈米、長度可達數十微米之單晶矽奈米線。當金屬催化劑(在此以鐵、釕及鐠等金屬)使用來製備單晶矽奈米線時,矽的{111}晶面由於能量最穩定而生長出來,且奈米線會沿著與晶面平行之<111>方向而成長。這樣的矽奈米線,是依循著氣液固法(vapor-liquid-solid,VLS)之生長機制而得到;相對而言,以二氧化矽做為催化劑時,矽的{111}晶面仍會生長,但奈米線生長方向則為<112>,也就是奈米線生長方向與晶面生長方向呈現垂直的現象,可歸類於利用氧化物輔助(oxide-assisted,OA)生長機制進行催化後所生成之矽奈米線。之外,由於合成時所使用壓力不同,可以發現隨著壓力增大,奈米線的直徑會增加,但長度則會縮短。利用拉曼光譜的技術,可以用來測量不同尺寸之矽奈米線其最強之聲子F2g mode的峰值與所產生的紅位移(red shift)現象。在塊材中之F2g mode的峰值約為520 cm-1,但隨著矽奈米線之直徑不斷縮小的情況下,此一侷限效應導致峰值產生紅位移至約505 cm-1,同時峰之半高寬(full-width at half maximum)也隨著直徑變小會產生變寬的現象。
利用化學氣相沈積(chemical vapor deposition,CVD)的方法,在覆有金的奈米粒子(覆金之薄膜在高溫下會先再結晶成粒子)之矽基板上可以得到二氧化矽奈米管之一維結構。這些二氧化矽奈米管的直徑在40-100奈米,長度亦可到達數十微米之等級。由電子顯微鏡之分析觀察,可以發現這些奈米管是無結晶性的,並且由於合成溫度上些微的差異之下,可以得到薄壁與厚壁這兩種不同管壁厚度之奈米管。另外,因為不同溫度下使得金奈米粒子之形狀有所不同,也是使得奈米管的管壁厚度有所不同。根據進一步分析,可以發現這些二氧化矽成分主要是沿著金奈米粒子之{111}晶面而長出,而管柱則會分別沿著厚壁奈米管之<022>方向及薄壁奈米管之<200>方向生長。同時,在較高的溫度下,也可以發現到二氧化矽奈米線的蹤跡。除此之外,以二氧化矽之微米尺寸粉末及二氧化矽奈米管之樣品,利用拉曼光譜的研究之中,可以發現到在~467 cm-1的位置都具有一個很強的拉曼峰出現,因此可作為另一證實奈米管為二氧化矽的證明。最後,利用光放光光譜(photoluminescence)可以發現此奈米管具有四個不同放光中心之放光,並且可由傅立葉轉換紅外光譜(Fourier-transform Infrared spectroscopy)得到造成奈米管與粉末之間強度差異的原因。
藉由一氧化錫微米尺寸之粉末在高溫反應下,利用熱蒸發凝聚(thermal evaporation-condensation)的方式,合成單晶二氧化錫奈米帶的結構。這些奈米帶具有30-90奈米之帶寬,20-30奈米的帶厚且達到數十微米的帶長。經由X光繞射圖譜的分析,可以得知這些二氧化錫奈米帶為金紅石(rutile)正方晶系(tetragonal)結構。在高解析電子顯微鏡的影像分析中,可以看到二氧化錫之{110}晶面清晰之生長,且奈米帶會沿著<130>方向成長。這樣二氧化錫奈米帶的生長,主要是以一氧化錫所產生之自身不均衡反應(self-disproportion reaction)而生成之二氧化錫,利用氣固法(vapor-liquid,VS)之生長機制而生成。在拉曼光譜測量上,可以發現到此金紅石二氧化錫奈米帶之拉曼光譜結果具有很好的信噪比,且其Eg(475.9 cm-1)、A1g(635.5 cm-1)及B2g(777.2 cm-1)等拉曼峰可以清楚的解析出來。
最後是關於在太陽能電池中逐漸廣泛利用之銅銦化二硒奈米棒的合成與製備。在合成上,使用了兩種方式:雷射剝蝕法/陽極氧化鋁孔洞薄膜(anodic aluminum oxide,AAO)及溶液熱合成法(solvothermal)。由於在陽極氧化鋁薄膜上之分佈均勻的孔洞,使得經由雷射剝蝕後之銅銦化二硒成分可以擴散進入孔洞,在和薄膜表面先行鍍上之金屬產生共熔組成而析出銅銦化二硒的一維奈米棒狀結構。其直徑約為150-200奈米,但只能到達約2微米的長度。相對地,以溶液相反應所得到之銅銦化二硒奈米棒狀結構,反應需要較長之反應時間,但可以發現因此能夠達到更佳之長寬比(aspect ratio)及產率。這樣的銅銦化二硒奈米棒,直徑可以達到50-100奈米以及長度可至數微米,並且可以在高解析電子顯微鏡中看到其{112}晶面存在之證據,並且由電子繞射圖形上之分析,可確定其為單晶之結構。而這樣的銅銦化二硒奈米棒主要沿著<331>的方向生長。藉由紫外光/可見光/近紅外光(UV/Vis/NIR)吸收光譜,可以發現到所合成之銅銦化二硒奈米棒的吸收峰峰頂(peak,~1162 nm)與升起處(onset,~1262 nm)相差了約100 nm,並且可發現與含銅量較高之銅銦化二硒的塊材有相當類似之光譜結果,因此,可以得到所合成之銅銦化二硒奈米棒之化學組成相當接近銅:銦:硒=1:1:2的比例。同時,利用拉曼光譜的鑑定,可以得到銅銦化二硒最強的拉曼峰A1(175.1 cm-1)的存在,藉此再次證明所合成之奈米棒為純的銅銦化二硒之成分。另外,也對於這些成分相當一致的奈米棒做了光放光光譜的解析,發現到許多不同結構之缺陷有放光現象。
zh_TW
dc.description.abstractAs the improvement in the nanoscience and nanotechnology, the synthesis and technology for the fabrication of nanosized materials have great development and become more complete than the past few years. In addition, it also has more structural changes in its dimensionality and size. In this thesis, four kinds of different one-dimensional semiconducting nanomaterials have been successfully fabricated using different physical or chemical synthetic methods and these nanomaterials are single-crystalline silicon nanowires, amorphous silicon dioxide nanotubes, single-crystalline tin dioxide nanobelts and single-crystalline copper indium diselenides nanorods.
By mixing the pure silicon powders and the catalysts (including metal or silicon dioxide powders) and with assistance for the laser ablation technology, the single-crystalline silicon nanowires (SiNWs) can be fabricated with the diameters reach 5-40 nm and the lengths extend to tens of micrometers. While the metal powders (like Fe, Ru and Pr) are used as the catalysts for the syntheses of SiNWs, the most stable Si {111} facets are grown and the growth direction for the SiNWs is parallel to the facets growth direction, i.e., the wire growth direction is <111> for the metal-catalyzed SiNWs. Such SiNWs are grown via the typical vapor-liquid-solid (VLS) growth mechanism that existing the eutectic liquid droplet formation during the synthesis. On the other hand, as the silicon dioxide (SiO2) used as the catalysts for the fabrication of SiNWs, the Si {111} facets also grow; however, the wire growth direction, as the <112> direction, is perpendicular to the lattice plane growth direction. The SiNWs catalyzed by SiO2 follow an oxide-assisted (OA) growth mechanism during their growths. Furthermore, based on the different chamber pressure used during the experiments, it can be found that with the increasing of the pressure, the diameters for SiNWs enlarge and the lengths for SiNWs shorten. The Raman spectra for the different diameter SiNWs are measured and the most intense F2g phonon mode, which is located ~ 520 cm-1, can be found that with decreasing for the diameter of SiNWs, the red-shifted behavior of the F2g mode is clearly seen from the corresponding Raman spectra.
By using the chemical vapor deposition method, the one-dimensional silicon dioxide nanotubes (SiO2NTs) are produced on the silicon substrate coated with Au nanoparticles which are preannealed at high temperature. The SiO2NTs can reach to 40-100 nm in diameters and extend to few micrometers in lengths. According to the electron diffraction (ED) pattern for the SiO2NTs, it can be confirmed that these nanotubes are amorphous. Besides this, the nanotubes can be separated into two groups, as thick- and thin-walled SiO2NTs, based on their different synthesis temperatures. Moreover, with the different reaction temperatures, the different shapes of Au nanoparticles are grown and this causes the different thicknesses of the SiO2NTs. With detailed analysis on the SiO2NTs, it can be figured out that the SiO2 species are diffused from the Au {111} facets and the walls of SiO2NTs are along the <022> direction of the thick-walled SiO2NTs while the <200> direction of the thin-walled SiO2NTs. Moreover, with the higher reaction temperature, the amorphous silicon dioxide nanowires (SiO2NWs) are synthesized on the silicon substrate. The Raman spectra of SiO2NTs and micro-crystallite SiO2 powders are taken and used for the characterization and both have the intense Raman peak (Si-O phonon mode) at ~ 467 cm-1.
With the thermal evaporation-condensation method, the high purity single-crystalline tin dioxide nanobelts (SnO2NBs) are fabricated via the thermal heating of tin monoxide (SnO) powders in high temperature. The SnO2NBs have their belt width for 30-90 nm, the belt thickness for 20-30 nm and the belt length for tens of micrometers. Based on the X-ray diffraction (XRD) measurements of the SnO2NBs, it can be confirmed that the nanobelts are the pure rutile tetragonal structures. From the high-resolved transmission electron microscopic images, the {111} lattice planes are clearly seen and the SnO2 nanobelt grows along the <130> direction indexed from the corresponding ED pattern. The growth of the SnO2NBs can be attributed to the self-disproportion reaction of SnO bulk powders via the vapor-solid (VS) growth mechanism. In the Raman spectrum measurement, the rutile SnO2NBs have good signal to noise ratio and the peaks at 475.9, 635.5, and 777.2 cm-1 are resolved which are corresponding to the Eg, A1g, and B2g phonon modes, respectively.
The last part in this thesis is the fabrication of the copper indium diselenide nanorods (CuInSe2NRs) which are commonly used in the solar cell technology. During the synthesis works, two ways are used for producing the CuInSe2 nanostructures, including the laser ablation/anodic aluminum oxide (AAO) membranes and the solvothermal methods. In the laser ablation/AAO membranes method, the AAO membranes have the highly uniform pore distribution and the CuInSe2 species can diffuse into the hollow channels to form the eutectic composites with the metal catalysts coated on the membranes and grow the one-dimensional CuInSe2 nanorods. The diameters of the CuInSe2NRs can reach 150-200 nm, however, the lengths of the can only extend ~2 micrometers. On the other hand, the CuInSe2NRs can also be synthesized by the solvothermal method, but the total reaction time is needed for at least 36 hours. Due to the long reaction time, the better aspect ratio and the product yield for the CuInSe2NRs can be acquired. The CuInSe2NRs fabricated by the solvothermal method have the diameter size of 50-100 nm and the lengths can extend to tens of micrometers. Moreover, from the high resolution image, the {112} lattice planes are found in the nanorods and can be indexed that the nanorods grow along the <331> direction. The Raman spectrum for CuInSe2NRs is taken and can be found that the most intense A1 phonon mode located at 175.1 cm-1 is clearly verified. This is another evidence tells us that the nanorods are purely with the CuInSe2 structures for the chemical composition.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:59:08Z (GMT). No. of bitstreams: 1
ntu-95-D89223008-1.pdf: 11111331 bytes, checksum: 9a8c1cec4ada1f31149f6e5830c54dcf (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsACKNOWLEDGEMENT I
CONTENTS IV
中文摘要 VII
ABSTRACT X
LIST OF TABLES XIII
LIST OF FIGURES XIV
Chapter 1 - Introduction
1.1 Overviews 1
1.2 Quantum confinement and optical properties 4
1.3 Importance for nanotechnology 7
1.4 Challenges in nanotechnology 11
1.5 Scope of this thesis 13
1.6 Bibliography 15
Chapter 2 - Methodology
2.1 Overviews 17
2.2 Synthesis methods of nanomaterials 17
2.2.1 Spontaneous growth 19
2.2.1.1 Fundamental of evaporation (dissolution)-condensation growth 19
2.2.1.2 Evaporation-condensation growth 23
2.2.1.3 Dissolution-condensation growth 26
2.2.1.4 Vapor-liquid-solid (VLS) and solution-liquid-solid (SLS) growth 29
2.2.2 Template-based synthesis 36
2.2.3 Electrospinning 37
2.2.4 Lithography 38
2.3 Characterization of nanomaterials 40
2.3.1 Scanning electron microscope (SEM) 40
2.3.2 Transmission electron microscope (TEM) 42
2.3.3 Electron diffraction (ED) analysis 46
2.3.4 X-ray diffraction (XRD) 49
2.3.5 Energy dispersive spectroscopy (EDS) 51
2.4 Bibliography 53
Chapter 3 - Silicon Nanowires
3.1 Overviews 58
3.2 Experimental setup 60
3.3 Results and discussion 63
3.3.1 XRD characterization 63
3.3.2 Diameter distribution of SiNWs 65
3.3.3 Electron microscope characterization of SiNWs 67
3.3.4 Growth mechanisms 79
3.3.5 Pressure effect for SiNWs 83
3.3.6 Raman spectra 85
3.3.7 Photoluminescence spectrum 88
3.4 Conclusions 91
3.5 Bibliography 92
Chapter 4 - Silica Nanotubes
4.1 Overviews 97
4.2 Experimental setup 98
4.3 Results and discussion 101
4.3.1 Morphology and composition 101
4.3.2 Growth mechanism 105
4.3.3 Tubule axes 108
4.3.4 Fabrication of silica nanowires (SiO2NWs) 112
4.3.5 Raman-scattering spectra 115
4.3.6 Photoluminescence and Fourier-transform infrared spectra 117
4.4 Conclusions 120
4.5 Bibliography 123
Chapter 5 - Tin Dioxide Nanobelts
5.1 Overviews 126
5.2 Experimental setup 127
5.3 Results and discussion 129
5.3.1 XRD characterization 129
5.3.2 Electron microscope characterization of SnO2 nanostructures 131
5.3.3 The growth mechanism for SnO2NBs 138
5.3.4 Raman spectra 139
5.4 Conclusions 141
5.5 Bibliography 142
Chapter 6 - Copper Indium Diselenide Nanorods
6.1 Overviews 144
6.2 Experimental setup 146
6.3 Results and discussion 153
6.3.1 XRD characterization 153
6.3.2 Electron microscope characterization of CuInSe2 nanostructures 155
6.3.3 Possible growth mechanism for CuInSe2 nanorods 163
6.3.4 UV/Vis/NIR absorption spectrum 164
6.3.5 Raman spectrum 166
6.3.6 Photoluminescence spectra 166
6.4 Conclusions 172
6.5 Bibliography 175
Appendix A - TEM-related Tables 178
Appendix B - Publications 185
dc.language.isoen
dc.title合成與鑑定一維半導體奈米結構:矽奈米線、二氧化矽奈米管、二氧化錫奈米帶及銅銦化二硒奈米棒zh_TW
dc.titleSyntheses and Characterizations of One-Dimensional Semiconducting Nanostructures: Si Wires, SiO2 Tubes, SnO2 Belts and CuInSe2 Rodsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee何東英(Tong-Ing Ho),楊哲人(Jer-Ren Yang),林唯芳(Wei-Fang Lin),簡淑華(Shu-Hua Chien)
dc.subject.keyword奈米線,奈米管,奈米帶,奈米棒,矽,二氧化矽,二氧化錫,銅銦化二硒,奈米結構,zh_TW
dc.subject.keywordNanowires,Nanotubes,Nanobelts,Nanorods,Silicon,Silica,Silicon dioxide,Tin dioxide,Copper indium diselenide,Nanostructures,en
dc.relation.page209
dc.rights.note有償授權
dc.date.accepted2006-06-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
10.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved