請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴信志 | |
| dc.contributor.author | Po-Chi Soo | en |
| dc.contributor.author | 蘇伯琦 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:58:39Z | - |
| dc.date.available | 2008-08-02 | |
| dc.date.copyright | 2006-08-02 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-27 | |
| dc.identifier.citation | Adams M , Jia Z (2005) Structural and biochemical analysis reveal pirins to possess quercetinase activity. J Biol Chem 280: 28675-28682.
Adler J , Templeton B (1967) The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol 46: 175-184. Alavi M , Belas R (2001) Surface sensing, swarmer cell differentiation, and biofilm development. Methods Enzymol 336: 29-40. Alberti L , Harshey RM (1990) Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol 172: 4322-4328. Allison C, Coleman N, Jones PL, Hughes C (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60: 4740-4746. Allison C , Hughes C (1991a) Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75: 403-422. Allison C , Hughes C (1991b) Closely linked genetic loci required for swarm cell differentiation and multicellular migration by Proteus mirabilis. Mol Microbiol 5: 1975-1982. Allison C , Hughes C (1991c) Closely linked genetic loci required for swarm cell differentiation and multicellular migration by Proteus mirabilis. Mol Microbiol 5: 1975-1982. Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167: 179-184. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. Ang S, Horng YT, Shu JC, Soo PC, Liu JH, Yi WC, Lai HC, Luh KT, Ho SW, Swift S (2001) The role of RsmA in the regulation of swarming motility in Serratia marcescens. J Biomed Sci 8: 160-169. Bateman A , Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299: 1113-1119. Belas R, Schneider R, Melch M (1998) Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. J Bacteriol 180: 6126-6139. Beveridge TJ , Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55: 684-705. Bootsma HJ, Aerts PC, Posthuma G, Harmsen T, Verhoef J, van Dijk H, Mooi FR (1999) Moraxella (Branhamella) catarrhalis BRO beta-lactamase: a lipoprotein of gram-positive origin? J Bacteriol 181: 5090-5093. Bootsma HJ, van Dijk H, Verhoef J, Fleer A, Mooi FR (1996) Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis. Antimicrob Agents Chemother 40: 966-972. Bouvier J, Pugsley AP, Stragier P (1991) A gene for a new lipoprotein in the dapA-purC interval of the Escherichia coli chromosome. J Bacteriol 173: 5523-5531. Braun V , Sieglin U (1970) The covalent murein-lipoprotein structure of the Escherichia coli cell wall. The attachment site of the lipoprotein on the murein. Eur J Biochem 13: 336-346. Buchanan BB , Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24: 47-53. Budrene EO , Berg HC (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 349: 630-633. Bukhari AI , Taylor AL (1971) Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli. J Bacteriol 105: 844-854. Chilcott GS , Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64: 694-708. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435-464. Cserzo M, Bernassau JM, Simon I, Maigret B (1994) New alignment strategy for transmembrane proteins. J Mol Biol 243: 388-396. Danson MJ, Fersht AR, Perham RN (1978a) Rapid intramolecular coupling of active sites in the pyruvate dehydrogenase complex of Escherichia coli: mechanism for rate enhancement in a multimeric structure. Proc Natl Acad Sci U S A 75: 5386-5390. Danson MJ, Fersht AR, Perham RN (1978b) Rapid intramolecular coupling of active sites in the pyruvate dehydrogenase complex of Escherichia coli: mechanism for rate enhancement in a multimeric structure. Proc Natl Acad Sci U S A 75: 5386-5390. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298. De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60: 4339-4344. de Kok A, Hengeveld AF, Martin A, Westphal AH (1998) The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. Biochim Biophys Acta 1385: 353-366. de L, V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172: 6568-6572. Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A (1999) The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene 18: 3316-3323. Desai JD , Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61: 47-64. Deutsch J, Rapoport SI, Rosenberger TA (2002) Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem Res 27: 1577-1582. Domingo GJ, Chauhan HJ, Lessard IA, Fuller C, Perham RN (1999) Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. Eur J Biochem 266: 1136-1146. Dufour A, Furness RB, Hughes C (1998) Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol Microbiol 29: 741-751. Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 26: 740-746. Eberl L, Molin S, Givskov M (1999) Surface motility of Serratia liquefaciens MG1. J Bacteriol 181: 1703-1712. Errington J (1993) Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57: 1-33. Evans DJ, Brown MR, Allison DG, Gilbert P (1990) Susceptibility of bacterial biofilms to tobramycin: role of specific growth rate and phase in the division cycle. J Antimicrob Chemother 25: 585-591. Fraser GM, Claret L, Furness R, Gupta S, Hughes C (2002) Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology 148: 2191-2201. Fraser GM , Hughes C (1999) Swarming motility. Curr Opin Microbiol 2: 630-635. Fries M, Jung HI, Perham RN (2003) Reaction mechanism of the heterotetrameric (alpha2beta2) E1 component of 2-oxo acid dehydrogenase multienzyme complexes. Biochemistry 42: 6996-7002. Gacesa P (1998) Bacterial alginate biosynthesis--recent progress and future prospects. Microbiology 144 ( Pt 5): 1133-1143. Ghrayeb J, Lunn CA, Inouye S, Inouye M (1985) An alternate pathway for the processing of the prolipoprotein signal peptide in Escherichia coli. J Biol Chem 260: 10961-10965. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180: 742-745. Gomez-Miguel MJ , Moriyon I (1986) Demonstration of a peptidoglycan-linked lipoprotein and characterization of its trypsin fragment in the outer membrane of Brucella spp. Infect Immun 53: 678-684. Gomez-Miguel MJ, Moriyon I, Lopez J (1987) Brucella outer membrane lipoprotein shares antigenic determinants with Escherichia coli Braun lipoprotein and is exposed on the cell surface. Infect Immun 55: 258-262. Gribskov M, Devereux J, Burgess RR (1984) The codon preference plot: graphic analysis of protein coding sequences and prediction of gene expression. Nucleic Acids Res 12: 539-549. Grimont PA , Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32: 221-248. Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 100: 12057-12062. Harshey RM (1994) Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13: 389-394. Harshey RM (2003) Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57: 249-273. Harshey RM , Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91: 8631-8635. Hausner M , Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65: 3710-3713. Hayashi S , Wu HC (1990) Lipoproteins in bacteria. J Bioenerg Biomembr 22: 451-471. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36: 478-503. Hihara Y, Muramatsu M, Nakamura K, Sonoike K (2004) A cyanobacterial gene encoding an ortholog of Pirin is induced under stress conditions. FEBS Lett 574: 101-105. Hines DA, Saurugger PN, Ihler GM, Benedik MJ (1988) Genetic analysis of extracellular proteins of Serratia marcescens. J Bacteriol 170: 4141-4146. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P (2002) The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 45: 1655-1671. Hussain M, Ichihara S, Mizushima S (1980) Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J Biol Chem 255: 3707-3712. Inukai M, Nakajima M, Osawa M, Haneishi T, Arai M (1978) Globomycin, a new peptide antibiotic with spheroplast-forming activity. II. Isolation and physico-chemical and biological characterization. J Antibiot (Tokyo) 31: 421-425. Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL (2001) JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39: 1225-1236. Jobling MG , Holmes RK (2000) Identification of motifs in cholera toxin A1 polypeptide that are required for its interaction with human ADP-ribosylation factor 6 in a bacterial two-hybrid system. Proc Natl Acad Sci U S A 97: 14662-14667. Kaiser D , Losick R (1993) How and why bacteria talk to each other. Cell 73: 873-885. Kim SK , Kaiser D (1990) C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61: 19-26. Koronakis V , Hughes C (1988) Identification of the promoters directing in vivo expression of hemolysin genes in Proteus vulgaris and Escherichia coli. Mol Gen Genet 213: 99-104. Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, Michel GP, Uh M, Celli J, Filloux A, De Bentzmann S, Steinmetz I, Hoffmann JA, Finlay BB, Gorvel JP, Ferrandon D, Ewbank JJ (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22: 1451-1460. Kutsukake K (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol Gen Genet 254: 440-448. Lapik YR , Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15: 1578-1590. Li C, Louise CJ, Shi W, Adler J (1993) Adverse conditions which cause lack of flagella in Escherichia coli. J Bacteriol 175: 2229-2235. Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180: 6384-6388. Liu JH, Lai MJ, Ang S, Shu JC, Soo PC, Horng YT, Yi WC, Lai HC, Luh KT, Ho SW, Swift S (2000) Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J Biomed Sci 7: 475-483. Macnab RM (1992) Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26: 131-158. Matsuyama S, Yokota N, Tokuda H (1997) A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J 16: 6947-6955. Matsuyama T, Bhasin A, Harshey RM (1995) Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol 177: 987-991. Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H, Yano I (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174: 1769-1776. McCarter L , Silverman M (1989) Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus. J Bacteriol 171: 731-736. McCarter L , Silverman M (1990) Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol 4: 1057-1062. McCoy AJ, Liu H, Falla TJ, Gunn JS (2001) Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob Agents Chemother 45: 2030-2037. Miller J. H. (1992) A short course in bacterial genetics. Cold Spring harbor Laboratory Press, Cold Spring Harbor, New York. Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics 14: 617-623. Mizushima T, Koyanagi R, Katayama T, Miki T, Sekimizu K (1997) Decrease in expression of the master operon of flagellin synthesis in a dnaA46 mutant of Escherichia coli. Biol Pharm Bull 20: 327-331. Nelson WJ (1992) Regulation of cell surface polarity from bacteria to mammals. Science 258: 948-955. Newton A , Ohta N (1990) Regulation of the cell division cycle and differentiation in bacteria. Annu Rev Microbiol 44: 689-719. Newton A, Ohta N, Ramakrishnan G, Mullin D, Raymond G (1989) Genetic switching in the flagellar gene hierarchy of Caulobacter requires negative as well as positive regulation of transcription. Proc Natl Acad Sci U S A 86: 6651-6655. Nishimura A , Hirota Y (1989) A cell division regulatory mechanism controls the flagellar regulon in Escherichia coli. Mol Gen Genet 216: 340-346. O'Toole GA , Kolter R (1998a) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295-304. O'Toole GA , Kolter R (1998b) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449-461. Ohara M, Wu HC, Sankaran K, Rick PD (1999) Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12. J Bacteriol 181: 4318-4325. Oka T , Simpson FJ (1971) Quercetinase, a dioxygenase containing copper. Biochem Biophys Res Commun 43: 1-5. Orzaez D, de Jong AJ, Woltering EJ (2001) A tomato homologue of the human protein PIRIN is induced during programmed cell death. Plant Mol Biol 46: 459-468. Pang H, Bartlam M, Zeng Q, Miyatake H, Hisano T, Miki K, Wong LL, Gao GF, Rao Z (2004) Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. J Biol Chem 279: 1491-1498. Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Camara M, Haas D, Williams P (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183: 6676-6683. Pollitt S, Inouye S, Inouye M (1986) Effect of amino acid substitutions at the signal peptide cleavage site of the Escherichia coli major outer membrane lipoprotein. J Biol Chem 261: 1835-1837. POLLOCK MR (1956) The cell-bound penicillinase of Bacillus cereus. J Gen Microbiol 15: 154-169. Pratt LA , Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30: 285-293. Pratt LA , Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2: 598-603. Prentki P , Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303-313. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181: 5993-6002. Pruss BM, Markovic D, Matsumura P (1997) The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J Bacteriol 179: 3818-3821. Pruss BM , Matsumura P (1996) A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J Bacteriol 178: 668-674. Ready DF (1989) A multifaceted approach to neural development. Trends Neurosci 12: 102-110. Richaud F, Richaud C, Ratet P, Patte JC (1986) Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J Bacteriol 166: 297-300. Rosenberg E , Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52: 154-162. Sambrook J., Maniatis T., & Fritsch E. F. (1989) Molecular cloning. A laboratory manual. 2nd edn. Cold Spring Harbor Laboratory., Cold Spring Harbor, NY. Scapin G , Blanchard JS (1998) Enzymology of bacterial lysine biosynthesis. Adv Enzymol Relat Areas Mol Biol 72: 279-324. Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555: 154-159. Schuch R , Maurelli AT (1999) The mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation. Infect Immun 67: 1982-1991. Scragg IG, Kwiatkowski D, Vidal V, Reason A, Paxton T, Panico M, Dell A, Morris H (2000) Structural characterization of the inflammatory moiety of a variable major lipoprotein of Borrelia recurrentis. J Biol Chem 275: 937-941. Seydel A, Gounon P, Pugsley AP (1999) Testing the '+2 rule' for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34: 810-821. Shapiro JA (1987) Organization of developing Escherichia coli colonies viewed by scanning electron microscopy. J Bacteriol 169: 142-156. Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52: 81-104. Shapiro L, Kaiser D, Losick R (1993) Development and behavior in bacteria. Cell 73: 835-836. Shi W, Bogdanov M, Dowhan W, Zusman DR (1993a) The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 175: 7711-7714. Shi W, Li C, Louise CJ, Adler J (1993b) Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol 175: 2236-2240. Shi W, Zhou Y, Wild J, Adler J, Gross CA (1992) DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol 174: 6256-6263. Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54: 473-501. Signoretto C, Lleo MM, Canepari P (2002) Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol 44: 125-131. Silverman M , Simon M (1974) Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol 120: 1196-1203. SIMPSON FJ, TALBOT G, WESTLAKE DW (1960) Production of carbon monoxide in the enzymatic degradation of rutin. Biochem Biophys Res Commun 2: 15-18. Sinha KA, Keen JK, Ogun SA, Holder AA (1996) Comparison of two members of a multigene family coding for high-molecular mass rhoptry proteins of Plasmodium yoelii. Mol Biochem Parasitol 76: 329-332. Soo PC, Wei JR, Horng YT, Hsieh SC, Ho SW, Lai HC (2005) Characterization of the dapA-nlpB genetic locus involved in regulation of swarming motility, cell envelope architecture, hemolysin production, and cell attachment ability in Serratia marcescens. Infect Immun 73: 6075-6084. Soto MJ, Fernandez-Pascual M, Sanjuan J, Olivares J (2002) A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol 43: 371-382. Sowa BA, Kelly KA, Ficht TA, Frey M, Adams LG (1991) SDS-soluble and peptidoglycan-bound proteins in the outer membrane-peptidoglycan complex of Brucella abortus. Vet Microbiol 27: 351-369. Tao GZ, Kobayashi A, Itoh H, Tashima Y (1998) Expression of pI(Cln) in Escherichia coli gives a strong tolerance to hypotonic stress. FEBS Lett 434: 28-32. Tibor A, Decelle B, Letesson JJ (1999) Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect Immun 67: 4960-4962. Tibor A, Saman E, de Wergifosse P, Cloeckaert A, Limet JN, Letesson JJ (1996) Molecular characterization, occurrence, and immunogenicity in infected sheep and cattle of two minor outer membrane proteins of Brucella abortus. Infect Immun 64: 100-107. Tobes R , Ramos JL (2002) AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30: 318-321. Tsay YG, Wang YH, Chiu CM, Shen BJ, Lee SC (2000) A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal Biochem 287: 55-64. Wall D , Kaiser D (1999) Type IV pili and cell motility. Mol Microbiol 32: 1-10. Watnick P , Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182: 2675-2679. Watnick PI , Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34: 586-595. Wehrmann A, Phillipp B, Sahm H, Eggeling L (1998) Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum. J Bacteriol 180: 3159-3165. Wendler WM, Kremmer E, Forster R, Winnacker EL (1997) Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 272: 8482-8489. Williams FD , Schwarzhoff RH (1978) Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol 32: 101-122. Wood WB (1988) Determination of pattern and fate in early embryos of Caenorhabditis elegans. Dev Biol (N Y 1985 ) 5: 57-78. Yamaguchi K, Yu F, Inouye M (1988) A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53: 423-432. Yamakura F, Ikeda Y, Kimura K, Sasakawa T (1974) Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis. J Biochem (Tokyo) 76: 611-621. Yildiz FH , Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96: 4028-4033. Yugari Y , Gilvarg C (1962) Coordinate end-product inhibition in lysine synthesis in Escherichia coli. Biochim Biophys Acta 62: 612-614. Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA (2001) Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 183: 6832-6840. Zusman DR , McBride MJ (1991) Sensory transduction in the gliding bacterium Myxococcus xanthus. Mol Microbiol 5: 2323-2329. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34219 | - |
| dc.description.abstract | 靈菌之表面移行是屬於鞭毛運動,細胞分化及細胞族群密度的多細胞行為。目前已知flhDC 及 Quorum-Sensing 系統為調控靈菌表面移行的重要因子,但仍然還有許多未知的調控機制尚須要進一步探索。靈菌是一種受溫度調控而影響表面移行的細菌,當溫度在低溫30度時會表現出表面移行行為,但當溫度升高到37度時,則表面移行的行為就會被抑制。為了進一步探索這受溫度調控之表面移行行為的機制,我們利用跳躍子來篩選出在37度會表面移行的突變株。這些會提早表面移行的突變株中有兩株分別突變在dapASm-nlpBSm 基因位及pirinSm基因,這兩隻突變株分別跟細胞壁中的peptidoglycan 合成及Pyruvate dehydrogenase (PDH) 酵素活性有關。 在dapASm-nlpBSm 基因突變株中,經由進一步實驗證實,nlpBSm 基因所表現出的lipoprotein NlpBSm 和靈菌的表面移行有關。DapASm 則跟維持細胞型態及細胞膜相關之表現型有關。另一零菌PirinSm 蛋白,在進一步實驗中發現到會和PDH 酵素中的E1次單元形成結合體,且因此結合會由於抑制E1次單元活性,導至整個PDH酵素活性被抑制。且在pirinSm 突變株中E1 次單元活性、PDH酵素活性及細胞ATP的產量分別比野生株多約150%、40%及120%。因此,我們認為靈菌的PirinSm 會經由抑制PDH 酵素活性導至TCA cycle能量調控受到壓抑。 | zh_TW |
| dc.description.abstract | Swarming migration of Serratia marcescens requires both flagellar motility and cellular differentiation and is a population-density-dependent behavior. While the flhDC and quorum-sensing systems have been characterized as important factors regulating S. marcescens swarming, the underlying molecular mechanisms are currently far from being understood. Serratia swarming is thermoregulated and is characterized by continuous surface migration on rich swarming agar surfaces at 30 degrees C but not at 37 degrees C. To further elucidate the mechanisms, identification of specific and conserved regulators that govern the initiation of swarming is essential. We performed transposon mutagenesis to screen for S. marcescens strain CH-1 mutants that swarmed at 37 degrees C. Analysis of a 'precocious-swarming' mutant revealed that the defect in a conserved dapASm-nlpBSm genetic locus and pirinSm gene which are closely related to the synthesis of bacterial cell wall peptidoglycan and pyruvate dehydrogenase (PDH) enzyme activity, respectively. In dapASm-nlpBSm mutant, further complementation and gene knockout studies showed that nlpBSm, which encodes a membrane lipoprotein, NlpBSm, but not dapASm, is specifically involved in swarming regulation. We also present evidence that DapASm is involved in the determination of cell-envelope-associated phenotypes and that NlpBSm is involved in the regulation of swarming motility. In S. marcescens PirinSm, protein pull-down and bacterial two-hybrid assays followed by SDS-PAGE and electrospray ionization (ESI) MASS-MASS analyses showed pyruvate dehydrogenase (PDH) E1 subunit as a component interacting with PirinSm. Functional analyses showed that both PDH E1 subunit activity and PDH enzyme complex activity were inhibited by PirinSm in S. marcescens CH-1. Accordingly, the PDH E1, PDH enzyme complex activities and cellular ATP concentration were increased for up to 250 %, 140 % and 220 % respectively in S. marcescens CH-1 pirinSm mutant. Our results showed that PirinSm plays a regulatory role in the process of pyruvate catabolism to acetyl-CoA through interaction with PDH E1 subunit and inhibiting PDH complex activity in S. marcescens CH-1, suggesting PirinSm be an important protein involved in determining direction of pyruvate metabolism on whether to go towards the tricarboxylic acid (TCA) cycle or the fermentation pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:58:39Z (GMT). No. of bitstreams: 1 ntu-95-D91424001-1.pdf: 18839449 bytes, checksum: a5ecbdd592d8a994a135397e444adb73 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要 ……………………………………………………… I
Abstract ……………………………………………………… II Chapter 1 General introduction 1.1 Bacterial differentiatian and multicellular behaviour ……………………1 1.1.1 Specific examples of differentiation and development among bacteria ……… 2 1.2 Bacteria1 swarming migration …………………………………………………… 3 1.2.1 Frequently identified but poor1y understood ………………………… 3 1.2.2 The diversity of bacterial swarming …………………………………………3 1.2.3 The swarming of Vibrio parahaemolyticus ………………………………………4 1.2.4 The multicellular swarming behaviour of Proteus mirabilis ………………4 1.3 The swarming of Serratia marcescens …………………………………………6 1.3.1 S. marcescens is an important opportunistic pathogen ……………………… 1.3.2 The multicellular swarming behaviour of S. marcescens ………………………6 1.4 The factors involved in bacteria motility ………………………………………7 1.4.1 Bacterial swarming ………………………………………………………7 1.4.2 Flagella-dependent swarming motility ………………………………8 1.4.3 Biosurfactant production is essential for the swarming motility …………8 1.4.4 Bacteria biofilm ……………………………………………………………9 1.5 Bacterial lipoprotein …………………………………………………………11 1.5.1 Lipoproteins in Brucella spp. …………………………………………11 1.5.2 Lipoproteins in Campylobacter jejuni …………………………………..………12 1.5.3 The function of lipoproteins ………………………………………………… 12 1.6 meso-diaminopimelate (m-DAP) and bacterial cell wall …………………………13 1.7 Main questions and works in this thesis ……………………………………14 Chapter 2 Materials and Methods 2.1 Bacterial strains, plasmids and primers …………………………………………15 2.2 Materials and reagents ……………………………………………………………16 2.3 Experimental procedures …………………………………………………………22 2.4 Detection of luciferase activity …………………………………………29 2.5 Construction of S. marcescens CH-1 nlpBSm and dapASm insertion deletion mutants ………………………………………………………………………29 2.6 Complementation of precocious-swarming mutants with dapASm and nlpBSm ………30 2.7 Cell attachment assay …………………………………………………………30 2.8 Measurement of hemolysin activity and pattern of cell-surface-associated proteins …………………………………………………………………………30 2.9 Transmission electron microscopy (TEM).……………………………………31 2.10 Scanning electron microscopy (SEM) …………………………………………31 2.11 Cytotoxicity assay . ………………………………………………………….31 2.12 Globomycin assay ……………………………………………………………31 2.13 Hypotonic tolerance assay ………………………………………………………32 2.14 Construction of a S. marcescens CH-1 pirinSm insertion deletion mutant S. marcescens PC103 …………………………………………32 2.15 GST Pull-Down Assay ………………………………………………………33 2.16 Protein Identification ………………………………………………33 2.17 Enzyme Assays ……………………………………………………… 2.18 Acetyl-CoA Concentration Assay ……………………………………………35 2.19 Bacterial Two-hybrid Screening ………………………………………………35 2.20 ATP assay ……………………………………………………………35 Chapter 3 Characterization of the dapA-nlpB Genetic Locus Involved in Regulation of Swarming Motility, Cell Envelope Architecture, Hemolysin Production, and Cell Attachment Ability in Serratia marcescens 3.1 Introduction ………………………………………………………………37 3.2 Results ………………………………………………………………38 3.2.1 A Serratia marcescens mutant with aberrant precocious swarming behavior …………………………………………………………38 3.2.2 Characterization of the locus interrupted by transposon …………………39 3.2.3 nlpBSm is specifically involved in swarming regulation ……………………40 3.2.4 NlpBSm is a constitutively expressed membrane lipoprotein ………………41 3.2.5 dapASm is involved in the determination of cell wall integrity, cell attachment ability, and hemolysin production in S. marcescens …………42 3.2.6 PC100 and PC102 show an increase in S. marcescens cytotoxicity ………44 3.3 Discussion ………………………………………………44 Chapter 4 Characterization of the pirin Genetic Locus Involved in Regulation of Swarming Motility, Hemolysin Production, and Cell Attachment Ability in Serratia marcescens 4.1 Introduction …………………………………………………48 4.2 Results …………………………………………………………49 4.2.1 A Serratia marcescens mutant with aberrant precocious swarming behavior ………………………………………………………………………..49 4.2.2 Characterization of the locus interrupted by transposon ………………..…50 4.2.3 flhDC and flagellum expression were increased in PirinSm mutant strain …51 4.2.4 PirinSm is involved in the cell attachment ability and hemolysin production in S. marcescens ……………………………………………………51 4.2.5 PirinSm is a heat and stationary phase induced Protein …………………52 4.3 Discussion and Conclusion ………………………………52 Chapter 5 Pirin regulates pyruvate catabolism through interaction with pyruvate dehydrogenase E1 subunit and modulating pyruvate dehydrogenase activity 5.1 Introduction ……………………………………………………………………54 5.2 Results ……………………………………………………………………56 5.2.1 A Pirin ortholog is identified in Serrati marcescens …………………………56 5.2.2 S. marcescens PirinSm interacts with E1 subunit of pyruvatedehy drogenase ………………………………………………………………………57 5.2.3 Inhibition of PDH E1 activity by PirinSm ……………………………………58 5.2.4 PDH enzyme complex activity is inhibited by PirinSm in S. marcescens ……60 5.2.5 Cellular ATP concentration is increased in S. marcescens PC103 …………61 5.3 Discussion ……………………………………………………63 Chapter 6 General discussions …………………………………68 Reference list ……………………………………………………72 | |
| dc.language.iso | en | |
| dc.subject | 多細胞行為 | zh_TW |
| dc.subject | 靈菌 | zh_TW |
| dc.subject | multucellular brhavior | en |
| dc.subject | Serratia marcescens | en |
| dc.title | 靈菌多細胞表面移行行為之調控― DapASm-NlpBSm及 PirinSm之調控角色 | zh_TW |
| dc.title | Regulation of multicellular surface translocation behaviour in Serratia marcescens ― Role of DapASm-NlpBSm and PirinSm regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王錦堂,胡小婷,鄧麗珍,鄧述諄 | |
| dc.subject.keyword | 靈菌,多細胞行為, | zh_TW |
| dc.subject.keyword | Serratia marcescens,multucellular brhavior, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-06-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 18.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
