Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorWan-Yu Wengen
dc.contributor.author翁婉玉zh_TW
dc.date.accessioned2021-06-13T05:58:18Z-
dc.date.available2006-07-03
dc.date.copyright2006-07-03
dc.date.issued2006
dc.date.submitted2006-06-27
dc.identifier.citation[1] Agrawal, R., and Srikant, R., 1994. Fast algorithms for mining association rules. In: Proc. of Int. Conf. on Very Large Data Bases, pp. 487-499.
[2] Berberidis, C., Angelis, L., and Vlahavas, I., 2004. PREVENT: An algorithm for mining inter-transactional for the prediction of rare events. In: Proc. of the 2nd European Starting AI Researcher Symposium, IOS Press.
[3] Brin, S., Motwani, R., Ullman, J., and Tsur, S., 1997. Dynamic itemset counting and implication rules for market basket data. In: Proc. of ACM-SIGMOD Int. Conf. on Management Of Data, pp. 255-264.
[4] Burdick, D., Calimlim, M., and Gehrke, J., 2001. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int. Conf. on Data Engineering, pp. 443-452.
[5] Feng, L., Yu, J.X., Lu, H., and Han, J., 2002. A template model for multidimensional inter-transactional association rules. The VLDB Journal 11 (2), pp. 153-175.
[6] Han, J., and Fu, Y., 1995. Discovery of multiple-level association rules from large databases. In: Proc. of Int. Conf. on Very Large Data Bases, pp. 420-431.
[7] Han, J., and Kamber, M., 2000. Data mining: concepts and techniques, Morgan Kaufmann, San Francisco.
[8] Han, J., Wang, J., Lu, Y., and Tzvetkov, P., 2002. Mining top-k frequent closed patterns without minimum support. In: Proc. of the 2nd Int. Conf. on Data Mining, pp. 211-218.
[9] Huang , K.Y., Chang, C.H., and Lin, K.Z., 2005. ClosedPROWL: Efficient Mining of Closed Frequent Continuities by Projected Window List Technology. In: Proc. of the 5th SIAM International Conference on Data Mining.
[10] Lu, H., Feng, L., and Han, J., 2000. Beyond intratransaction association analysis: mining multidimensional inter-transaction association rules. ACM Transactions on Information Systems 18 (4), pp. 423-454.
[11] Lu, H., Han, J., and Feng, L., 1998. Stock movement prediction and n-dimensional inter-transaction association rules, In: Proc. of the 3rd ACM-SIGMOD Workshop on Research Issues on Data Mining and Knowledge, pp. 12:1-12:7.
[12] Park, J.S., Chen, M.S., and Yu, P.S., 1995. An effective hash-based algorithm for mining association rules. In: Proc. of ACM-SIGMOD Int. Conf. on Management Of Data, pp. 175-186.
[13] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L., 1999. Discovering frequent closed itemsets for association rules. In: Proc. of the 5th Int. Conf. on Database Theory, pp. 398-416.
[14] Pei, J., Han, J., and Mao, R., 2000. Closet: An efficient algorithm for mining frequent closed itemsets. In: Proc. of the 5th ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 11-20.
[15] Savasere, A., Omiecinski, E., and Navathe, S., 1995. An efficient algorithm for mining association rules in large databases. In: Proc. of Int. Conf. on Very Large Data Bases, pp. 432-443.
[16] Shenoy, P., Haritsa, J.R., Sudarshan, S., Bawa, M., Bhalotia, G., and Shah, D., 2000. Turbo-charging vertical mining of large databases. In: Proc. of ACM-SIGMOD Int. Conf. on Management of Data, pp. 22-33.
[17] Singh, N.G., Singh, S.R., and Mahanta, A.K., 2005. CloseMiner: Discovering frequent closed itemsets using frequent closed tidsets. In: Proc. of the 5th Int. Conf. on Data Mining, pp. 633-636.
[18] Srikant, R., and Agrawal, R., 1995. Mining generalized association rules. In: Proc. of Int. Conf. on Very Large Data Bases, pp. 407-419.
[19] Srikant, R., and Agrawal, R., 1996. Mining quantitative association rules in large relational tables. In: Proc. of ACM-SIGMOD Int. Conf. on Management of Data, pp. 1-12.
[20] Tung, A.K.H., Lu, H., Han, J., and Feng, L., 1999. Breaking the barrier of transactions: mining inter-transaction association rules. In: Proc. of ACM Int. Conf. on Knowledge and Data Discovery, pp. 423-454.
[21] Tung, A.K.H., Lu, H., Han, J., and Feng, L., 2003. Efficient mining of intertransaction association rules. IEEE Transactions on Knowledge and Data Engineering 15 (1), pp. 43-56.
[22] Wang, J., Han, J., and Pei, J., 2003. Closet+: Searching for the best strategies for mining frequent closed itemsets. In: Proc. of the 9th ACM-SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 236-245.
[23] Zaki, M.J., 2000. Generating non-redundant association rules. In: Proc. of the 6th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 34-43.
[24] Zaki, M. J., and Gouda, K., 2003. Fast vertical mining using diffsets. In: Proc. of the 9th ACM-SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 326-335.
[25] Zaki, M.J., and Hsiao, C.J., 2005. Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering 17 (4), pp. 462-478.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34210-
dc.description.abstract跨交易關聯規則可代表不同交易中項目間的關係,而近年來有愈來愈多相關的探勘演算法被提出,然而這些演算法會產生相當多的跨交易頻繁項目集合。找尋封閉性跨交易頻繁項目集合可使探勘的過程更有效率。
因此,在本篇論文中我們提出了一個探勘演算法叫「ICMiner」,以找尋封閉性跨交易頻繁項目集合。我們的方法可分為兩個階段。第一階段,將原始的資料庫轉換成領域屬性集合,使得每一個頻繁項目的領域屬性形成一個集合。第二階段,利用ID-tree去列舉出所有的封閉性跨交易頻繁項目集合。藉由ID-tree進行資料探勘,我們可以避免產生候選樣式及重複計算支持度。因此,ICMiner可大幅提升了找尋跨交易頻繁項目集合的效率。實驗結果顯示,ICMiner比FITI與ClosedPROWL快上幾十倍。
zh_TW
dc.description.abstractMany algorithms have been proposed recently for finding inter-transaction association rules, which represent the relationships among itemsets across different transactions. Since numerous frequent inter-transaction itemsets will be generated, mining closed frequent inter-transaction itemsets can speed up the mining process.
Therefore, in this thesis, we propose an algorithm, ICMiner (Inter-transaction Closed patterns Miner), to mine closed frequent inter-transaction itemsets. Our proposed algorithm consists of two phases. First, we convert the original transaction database into a set of domain attributes, datset, for each frequent item. Second, we enumerate closed frequent inter-transaction itemsets by using an itemset-datset tree, ID-tree. Mining closed frequent inter-transaction itemsets with an ID-tree, we can avoid costly candidate generation and repeatedly support counting. The experimental results show that our proposed algorithm outperforms the FITI and ClosedPROWL algorithms by one order of magnitude.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:58:18Z (GMT). No. of bitstreams: 1
ntu-95-R93725018-1.pdf: 474286 bytes, checksum: 00a7a214efc88025988bd2aac49a086d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Problem Definition 3
Chapter 3 Mining Closed Frequent Inter-transaction Itemsets 6
3.1 Pruning Strategies 6
3.1.1 ID-tree and Joinable Class 6
3.1.2 Pruning Strategies 8
3.2 Join Operation 9
3.3 The ICMiner Algorithm 11
3.4 An Example 13
3.5 Diffsets for Optimization 16
Chapter 4 Performance Evaluation 19
4.1 Generation of Synthetic Data 19
4.2 Experiments on Synthetic Data 20
4.2.1 Basic Experiments 20
4.2.2 Scale-up Experiments 22
4.2.3 Effect of the Maximum Span 25
4.2 Experiments on Real Data 26
Chapter 5 Conclusions and Future Work 29
References 30
dc.language.isoen
dc.subject跨交易項目集合zh_TW
dc.subject資料探勘zh_TW
dc.subject關聯規則zh_TW
dc.subject封閉性項目集合zh_TW
dc.subjectassociation rulesen
dc.subjectinter-transaction itemsetsen
dc.subjectclosed itemsetsen
dc.subjectdata miningen
dc.title封閉性跨交易頻繁項目集合之資料探勘zh_TW
dc.titleAn Efficient Algorithm for Mining Closed Frequent Inter-transaction Itemsetsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥良,劉敦仁
dc.subject.keyword資料探勘,關聯規則,跨交易項目集合,封閉性項目集合,zh_TW
dc.subject.keyworddata mining,association rules,inter-transaction itemsets,closed itemsets,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2006-06-28
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
463.17 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved