請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈川洲(Chuan-Chou Shen) | |
| dc.contributor.author | Yu-Te Hsieh | en |
| dc.contributor.author | 謝玉德 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:57:00Z | - |
| dc.date.available | 2007-07-03 | |
| dc.date.copyright | 2006-07-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-28 | |
| dc.identifier.citation | Andersen, M. B., Stirling, C. H., Potter, E.-K., and Halliday, A. N. (2004) Toward epsilon levels of measurement precision on 234U/238U by using MC-ICPMS. International Journal of Mass Spectrometry 237, 107-118.
Banner, J. L., Wasserburg, G. L., Chen, J. H., and Moore, C. H. (1990) 234U-238U-230U-232Th systematics in saline groundwaters from central Missouri. Earth and Planetary Science Letters 101 (2-4), 296-312. Barnes, J. W., Lang, E. J., and Potratz, H. A. (1956) Ratio of ionium to uranium in coral limestone. Science 124, 175-176. Bourdon, B., Henderson, G. M., Lundstrom, C. C., Turner, S. P. (2003) Uranium-Series Geochemistry, The Mineralogical Society of America, Washington, DC, USA. Chen, J. H. and Wasserburg, G. J. (1981) Isotopic determination of uranium in picomole and subpicomole quantities. Analytical Chemistry 53, 2060-2067. Chen, J. H., Edwards, R. L., and Wasserburg, G. J. (1986) 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters 80 (3-4), 241-251. Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., and Asmerom, Y. (2000) The half-lives of uranium-234 and thorium-230. Chemical Geology 169, 17-33. Delanghe, D., Bard, E., and Hamelin, B. (2002) New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Marine Chemistry 80 (1), 79-93. Deschamps, P., Doucelance, R., Ghaleb, B., and Michelot, J.-L. (2003) Further investigations on optimized tail correction and high-precision measurement of uranium isotopic ratios using multi-collector ICP-MS. Chemical Geology 201, 141-160. Edwards, R. L., Chen, J. H., and Wasserburg, G. J. (1986/87) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, 175-192. Edwards, R. L. (1988) High precision thorium-230 ages of corals and the timing of sea level fluctuation in the late Quaternary. PhD thesis, California Institute of Technology. Edwards, R. L., Beck, J. R., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M., and Taylor, F. W. (1993) A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260, 962-968. Eisenhauer, A., Wasserburg, G. J., Chen, J. H., Bonani, G., Collins, L. B., Zhu, Z. R., and Wyrwoll, K. H. (1993) Holocene sea-level determination relative to the Australian continent: U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands. Earth and Planetary Science Letters 114, 529-547. Goldstein, S. J. and Stirling, C. H. (2003) Techniques for measuring uranium-series nuclides: 1992-2002. Reviews in Mineralogy and Geochemistry 52, 23-57. Halliday, A. L., Lee, D.-C., Christensen, J. N., Walder, A. J., Freedman, P. A., Jones, C. E., Hall, C. M., Yi, W., and Teagle, D. (1995) Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry Ion Processes 146/147, 21-33. Hellstrom, J. (2003) Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry 18, 1346-1351. Henderson, G. M. and Anderson, R. F. (2003) The U-series toolbox for paleoceanography. Reviews in Mineralogy and Geochemistry 52, 493-531. Ivanovich, M. and Harmon, R. S. (1992) Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd ed. Clarendon Press, Oxford, U.K.. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M. (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889-1906. Ku, T.-L. (1965) An evaluation of the 234U/238U method as tool for dating pelagic sediments. Journal of Geophysical Research 70, 3457-3474. Luo, X., Rehkämper, M., Lee, D.-C., and Halliday, A. N. (1997) High precision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 171, 105-117. Miller, J. C. and Miller J. N. (1988) Statistics for Analytical Chemistry, 2nd ed., 227 pp., Ellis Horwood, New York. Potter, E.-K., Stirling, C. H., Andersen, M. B., and Halliday, A. N. (2005) High precision Faraday collector MC-ICPMS thorium isotope ratio determination. International Journal of Mass Spectrometry 247, 10-17. Quetel, C. R., Prohaska, T., Hamester, M., Kerl, W., and Taylor, P. D. P. (2000) Examination of the performance exhibited by a signal detector double focusing magnetic sector ICP-MS instrument for uranium isotope abundance ratio measurements over almost three orders of magnitude and down to pg g-1 concentration levels. Journal of Analytical Atomic Spectrometry 15, 353-358. Richter, S., Goldberg, S. A., Mason, P. B., Traina, A. J., and Schwieters, J. B. (2001) Linearity tests for secondary electron multipliers used in isotope ratio mass spectrometry. International Journal of Mass Spectrometry 206, 105-127. Robinson, L. F., Henderson, G. M., and Slowey, N. C. (2002) U-Th dating of marine isotope stage 7 in Bahamas slope sediments. Earth and Planetary Science Letters 196 (3-4), 175-187. Robinson, L. F., Belshaw, N. S., and Henderson, G. M. (2004) U and Th concentrations and isotope rations in modern carbonates and waters from the Bahamas. Geochimica et Cosmochimica Acta 68, 1777-1789. Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A. (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochimica et Cosmochimica Acta 42, 1075-1090. Shen, C.-C., Edwards, R. L., Cheng, H., Dorale, J. A., Thomas, R. B., Moran, S. B., Weinstein, S. E., and Edmonds, H. N. (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, 165-178. Shen, C.-C, Cheng, H., Edwards, R. L., Moran, S. B., Edmonds, H. N., Hoff, J. A., and Thomas, R. B. (2003) Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Analytical Chemistry 75, 1075-1079. Steiger, R. H. and Jäger, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359-362. Stein, M., Wasserburg, G. L., Lajoie, K. R., and Chen, J. H. (1991) U-series ages of solitary corals from the California coast by mass spectrometry. Geochimica et Cosmochimica Acta 55, 3709-3722. Stirling, C. H., Esat, T. M., McCulloch, M. T., and Lambeck, K. (1995) High-precision U-series dating of coral from Western Australia and implication for the timing and duration of the Last Interglacial. Earth and Planetary Science Letters 135, 115-130. Vanhaecke, F., Moens, L., Dams, R., and Taylor, P. (1996a) Precise measurement of isotope ratios with a double-focusing magnetic sector ICP mass spectrometer. Analytical Chemistry 68, 567-569. Walder, A. J., Koller, D., Reed, N. M., Hutton, R. C., and Freedman, P. A. (1993) Isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry incorporating a high efficiency nebulization system. Journal of Analytical Atomic Spectrometry 8, 1037-1041. Yokoyama, T., Makishima, A. and Nakamura, E. (2001) Precise analysis of 234U/238U ratio using UO2+ ion with thermal ionization mass spectrometry for natural samples. Chemical Geology 181, 1-12. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34176 | - |
| dc.description.abstract | 本研究利用多偵測器感應耦合電漿質譜儀發展了一套精準的鈾同位素比值及含量測量技術,精確度可達萬分比等級。我們使用四個法拉第杯同時測量鈾同位素, 233U, 234U, 235U, 及236U。利用233U-236U 雙示蹤劑有效校正質量分化效應以及計算鈾濃度。複雜之背景干擾,主要因不同238U 訊號、真空狀況及基質而改變外,亦235U 拖尾所影響,故同位素之背景值必須個別校正。若以簡單的指數行為描述背景頻譜,對233U, 234U 及236U的訊號強度,將造成萬分比至千分比的錯估。以進樣速率為每分鐘50 ml,測量鈾濃度2 ppm 約2-6 分鐘,僅需200-600 ng U 的標本量,δ234U 和鈾含量的測量精準度可達± 0.1-0.5‰ (2σ)。分析國際及實驗室之標準品,長時間之δ234U 及鈾含量測定重現性分別可達0.12‰及0.47‰,且與其他質譜術量測數值相吻合。重複分析國際標準品NBL-112A 和HU-1 的δ234U 平均結果分別為-37.10 ± 0.03‰ (2σm, n = 17) 和-0.17 ± 0.05‰ (2σm, n = 5)。自然界具有不同基質之各種珊瑚及洞穴石筍碳酸鹽樣品的δ234U 及鈾濃度測量值與其他千分比準度之質譜術所得數值一致。此分析技術將可應用至鈾系定年法,古氣候學,及岩石地球化學之相關研究。 | zh_TW |
| dc.description.abstract | Techniques used for precise and accurate determination of natural uranium isotopic ratios and concentration with sub-permil precision have been developed on a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS), Thermo Electron NEPTUNE. Uranium isotopes, 233U, 234U, 235U, and 236U, were statically measured in 4 Faraday collectors. A 233U-236U double spike method was employed to correct mass bias and determine uranium concentration. The behavior of complicated spectral background is attributed to tailing characteristics of 235U and 238U ion beams as well as vacuum condition and matrix effect. Individual background correction should be applied to the measured isotopes, 233U, 234U, and 236U, or a bias of sub-permil to permil level could be caused by using a simple exponential function correction. By introducing 2 ppm uranium with a uptake rate of 50 ml/min for 2-6 minutes, a sample size of 200-600 ng U is needed to offer a within-run precision of 0.1-0.5‰ for d234U and uranium concentration. Measurements made on reference materials and in-house standards demonstrate that an external reproducibility of 0.12‰ can be achieved for d234U and 0.47‰ for uranium concentration. Repeated measurements of NBL-112A and HU-1 give averaged d234U values of -37.10 ± 0.03‰ (2σm, n = 17) and -0.17 ± 0.05‰ (2σm, n =5), respectively, within error of accepted values. MC-ICP-MS data of d234U and uranium concentration for different carbonates, including corals and speleothems with various matrices, are in agreement with those measured by other mass spectrometric methods with a permil-level precision. This technique can be applied to the exploration of the frontiers in diverse fields of Earth Sciences, such as U series chronology, paleoclimatology, and geochemistry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:57:00Z (GMT). No. of bitstreams: 1 ntu-95-R93224102-1.pdf: 606184 bytes, checksum: bab6ce70e21bdbd2ed263452bc5d4b90 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | List of Figures ...III
List of Tables ...V 摘要(Abstract in Chinese) ...1 Abstract ...2 Chapter 1 Introduction ...3 Chapter 2 Experimental Methods ...6 2.1 Materials and chemistry ...6 2.1.1 Standards and samples ...6 2.1.2 Chemistry ...6 2.2 Instrumentation ...7 2.2.1 MC-ICP-MS ...7 2.2.2 Introduction system ...8 2.3 Detector calibration ...9 2.3.1 Faraday cup: gain and baseline ...9 2.3.2 SEM: yield and dead time ...9 2.4 Spectral interference ...10 2.4.1 Instrumental memory blank ...10 2.4.2 Scattering of reflected 238U ions ...11 2.4.3 238U and 235U tailing ...13 2.5 Analytical procedure ...14 2.5.1 Analysis protocols ...14 2.5.2 Measurement sequence ...15 2.5.3 Data acquisition ...16 2.5.4 Off-line data reduction ...17 Chapter 3 Results and Discussion ...18 3.1 Background correction for U tailing ...18 3.1.1 Behaviors of 235U and 238U tailing ...18 3.1.2 Correction of tailing background ...19 3.1.3 Mixtures of standard and 233U-236U tracer ...23 3.2 Precision and accuracy ...24 3.2.1 Protocol-1 with 6S-jumping mode ...24 3.2.2 Protocol-1 with 2S-jumping mode ...24 3.2.3 Comparison between the 6-step and the 2-step jumping modes ...26 3.2.4 Protocol-2 ...28 3.3 Natural carbonate standards and samples ...29 3.4 Comparison with other mass spectrometric techniques ...34 Chapter 4 Conclusions ...37 References ...38 Acknowledgments ...42 | |
| dc.language.iso | en | |
| dc.subject | 多偵測器感應耦合電漿質譜儀 | zh_TW |
| dc.subject | 同位素 | zh_TW |
| dc.subject | 鈾 | zh_TW |
| dc.subject | 雙示蹤劑法 | zh_TW |
| dc.subject | 拖尾效應校正 | zh_TW |
| dc.subject | 法拉第杯 | zh_TW |
| dc.subject | 濃度 | zh_TW |
| dc.subject | MC-ICP-MS | en |
| dc.subject | Uranium | en |
| dc.subject | Isotope | en |
| dc.subject | Concentration | en |
| dc.subject | Double spike method | en |
| dc.subject | Tail correction | en |
| dc.subject | Faraday cup | en |
| dc.title | 多偵測器感應耦合電漿質譜儀之精準鈾含量及同位素比值測量技術 | zh_TW |
| dc.title | Accurate and precise determination of uranium concentration and isotopic composition by multi-collector inductively coupled plasma mass spectrometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅尚德(Shangde Luo),扈治安(Chin-An Huh),沈君山(Jiun-San Shen) | |
| dc.subject.keyword | 鈾,同位素,濃度,雙示蹤劑法,拖尾效應校正,法拉第杯,多偵測器感應耦合電漿質譜儀, | zh_TW |
| dc.subject.keyword | Uranium,Isotope,Concentration,Double spike method,Tail correction,Faraday cup,MC-ICP-MS, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-06-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 591.98 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
