Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤
dc.contributor.authorKun-Shan Liuen
dc.contributor.author劉崑山zh_TW
dc.date.accessioned2021-06-13T05:55:33Z-
dc.date.available2007-07-10
dc.date.copyright2006-07-10
dc.date.issued2006
dc.date.submitted2006-06-30
dc.identifier.citationReferences
[Bei]: K.I. Beidar, { On functional identities and commuting additive mappings},
Comm. Algebra 26(6) (1998), 1819-1850.
[BFLW]: K.I. Beidar, Y. Fong, P.-H. Lee and T.-L. Wong, { On additive maps of prime rings satisfying the Engel condition},
Comm. Algebra 25 (1997), no. 12, 3889-3902.
[BMM]: K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, ``Rings with Generalized Identities',
Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
[Be1]: H.E. Bell and F. Guerriero, { Some conditions for finiteness and commutativity of rings},
Internat. J. Math. Math. Sci. 13 (1990), 535-544.
[Be2]: H.E. Bell and A.A. Klein, { On finiteness of rings with finite maximal subrings},
Internat. J. Math. Math. Sci. 16 (1993), no. 2, 351-354.
[Br1]: M. Bresar, { Centralizing mappings and derivations in prime rings},
J. Algebra 156 (1993), 385-394.
[Br2]: M. Bresar and C.R. Miers, { Commuting maps on Lie ideals},
Comm. Algebra 23 (1995), no. 14, 5539-5553.
[Cau]: G. Cauchon, { Les T-anneaux et les anneaux $grave{a}$ identit$acute{e}$s polynomiales noeth-$acute{e}$riness},
th$acute{e}$se, Orsay, 1977.
[Ch]: J.-C. Chang, { On fixed power central $(alpha, eta)$-derivations},
Bull. Inst. Math. Acad. Sinica 15 (1987), 163-178.
[ChLi]: J.-C. Chang and J.-S. Lin,{ $(alpha, eta)$-derivation with nilpotent values},
Chinese J. Math. 22 (1994), 349-355.
[C1]: C.-L. Chuang, { { ext{
m GPI}}s having coefficients in Utumi quotient rings},
Proc. Amer. Math. Soc. 103 (1988), 723-728.
[C2]: C.-L. Chuang, { Differential identities with automorphisms and antiautomorphisms, I},
J. Algebra 149 (1992), 371-404.
[C3]: C.-L. Chuang, { Differential identities with automorphisms and antiautomorphisms, II},
J. Algebra 160 (1993), 292-335.
[CL1]: C.-L. Chuang and T.-K. Lee, { Algebraic derivations with constants satisfying a polynomial identity},
Israel J. Math. 138 (2003), 43--60.
[CL2]: C.-L. Chuang and T.-K. Lee, { Algebraic q-skew derivations},
J. Algebra 282 (2004), no.1, 1-22.
[CL3]: C.-L. Chuang and T.-K. Lee, { q-Skew Derivations and Polynomial Identities},
Manuscripta Math. 116 (2005), no.2, 229-243.
[CL4]: C.-L. Chuang and T.-K. Lee, { Identities with a single skew derivation},
J. Algebra 288(1) (2005), 59-77.
[CL5]: C.-L. Chuang and T.-K. Lee, { Ore extensions which are GPI-rings}, submitted.
[CLZ]: C.-L. Chuang, T.-K. Lee and Y. Zhou, { Constants of Algebraic Derivations in Prime Rings}, submitted.
[Dr]: P.K. Draxl, ``Skew fields',
London Math. Soc., Lecture Note Series, 81, Cambridge University Press, Cambridge, 1983.
[He1]: I.N. Herstein, ``Noncommutative Rings',
Carus mathematics monograph 15, 1968.
[He2]: I.N. Herstein, ``Topics in Ring Theory',
University of Chicago Press, Chicago, 1969.
[Hi]: Y. Hirano, { On extensions of rings with finite additive index},
Math. J. Okayama Univ. 32 (1990), 93-95.
[Hv]: B. Hvala, { Generalized derivations in rings},
Comm. Algebra 26(4) (1998), 1147-1166.
[Ja]: N. Jacobson, ``PI-Algebras: an Introduction',
Lecture Notes in Math. 441, Springer-Verlag, Berlin and New York, 1975.
[Kl]: A.A. Klein, { The finiteness of a ring with a finite maximal subring},
Comm. Algebra 21(4) (1993), 1389-1392.
[Kh1]: V.K. Kharchenko, { Generalized Identities with Automorphisms},
(Russian) Algebra i Logika 14 (1975), no. 2, 215-237,
(English translation: Algebra and Logic 14 (1975), no. 2, 132-148.)
[Kh2]: V.K. Kharchenko, { Differential identities of prime rings},
(Russian) Algebra i Logika 17 (1978), 220-238.
(Engl. Transl., Algebra and Logic 17 (1978), 154-168.)
[Kh3]: V.K. Kharchenko, { Differential identities of semiprime rings},
(Russian) Algebra i Logika 18 (1979), 86-119.
(Engl. Transl., Algebra and Logic 18 (1979), 58-80.)
[La]: T.J. Laffey, { A finiteness theorem for rings},
Proc. Roy. Irish Acad. Sect. A 92(2) (1992), 285-288.
[L1]: T.-K. Lee, { Semiprime rings with differential identities},
Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
[L2]: T.-K. Lee, { Semiprime rings with hypercentral derivations},
Canad. Math. Bull. 38(4) (1995), 445-449.
[L3]: T.-K. Lee, { Power reduction property for generalized identities of one-sided ideals},
Algebra Colloq. 3 (1996), 19-24.
[L4]: T.-K. Lee, { Derivations and centralizing mappings in prime rings},
Taiwanese J. Math. 1 (1997), 333-342.
[L5]: T.-K. Lee, { Generalized derivations of left faithful rings},
Comm. Algebra 27(8) (1999), 4057-4073.
[L6]: T.-K. Lee, { $sigma$-commuting maps in semiprime rings},
Comm. Algebra 29(7) (2001), 2945-2951.
[L7]: T.-K. Lee, { Posner's theorem for $(sigma, au)$-derivations and $sigma$-centralizing maps},
Houston J. Math. 30 (2004), no. 2, 309--320.
[LL1]: T.-K. Lee and T.-C. Lee, { Commuting additive mappings in semiprime rings},
Bull. Inst. Math. Acad. Sinica 24 (1996), 259-268.
[LL2]: T.-K. Lee and T.-C. Lee, { Derivations with algebraic values of bounded degree},
Comm. Algebra 27(4) (1999), 1911-1920.
[Lu]: J. Luh, { A note on commuting automorphisms of rings},
Amer. Math. Monthly 77(1) (1970), 61-62.
[Mar]: W.S. Martindale 3rd, { Prime rings satisfying a generalized polynomial identity},
J. Algebra 12 (1969), 576-584.
[Mat]: J. Matczuk, { Extended centroids of skew polynomial rings },
Math. J. Okayama Univ. 30 (1988), 13--20.
[Ma1]: J.H. Mayne, { Centralizing automorphisms of prime rings},
Canad. Math. Bull., 19 (1976), 113-115.
[Ma2]: J.H. Mayne, { Centralizing automorphisms of Lie ideals in prime rings},
Canad. Math. Bull., 35 (1992), 510-514.
[PJ]: K.-H. Park and Y.-S. Jung, { Skew-commuting and commuting mappings in rings},
Aequationes Math. 64 (2002), 136-144.
[Po]: E.C. Posner, { Derivations in prime rings},
Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[Ro]: L.H. Rowen, { On rings with central polynomials},
J. Algebra 31 (1974), 393-426.
[Vi]: O.M. Di Vincenzo, { A result on derivations with algebraic values},
Canad. Math. Bull. 29 (1986), 432-437.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34136-
dc.description.abstractAbstract
This thesis focuses on differential identities and constants of algebraic automorphisms in prime rings. In
Chapter 1 we prove that an algebra over a field with a finite dimensional maximal subalgebra must be finite
dimensional.
In Chapters 2 and 3 we consider certain differential identities in prime rings. Firstly, we show that if a prime algebra admits a nonzero generalized skew derivation with algebraic values of bounded degree, then the algebra must be a primitive ring with nonzero socle and its associated division algebra is a finite-dimensional central division algebra. Secondly, we determine the structure of a prime ring admitting an additive n-commuting map which is linear over its center.
In Chapter 4 we consider constants of algebraic automorphisms in prime rings. Let R be a prime ring with extended centroid C. For an automorphism sig of R we let R^(sig)≡{x in R | sig(x)=x}, the subring of constants of sig on R. Suppose that the automorphism sig is algebraic over C. We give a complete characterization of the primeness and semiprimeness of the subring R^(sig). Moreover, if the subring R^(sig) is a prime PI-ring, we obtain the PI-degree of R^(sig) in terms of that of the whole ring R and the inner degree of the automorphism sig.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:55:33Z (GMT). No. of bitstreams: 1
ntu-95-F89221001-1.pdf: 333144 bytes, checksum: 0fe1b8bf2c3716bafeb8ae4c18311e17 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
Abstract
Introduction 1
Chapter 0. Preliminaries 6
Chapter 1. Algebras with a Finite-Dimensional Maximal
Subalgebra 12
Chapter 2. Generalized Skew Derivations with Algebraic
Values of Bounded Degree 16
Chapter 3. n-Commuting Maps on Prime Rings 25
Chapter 4. Constants of Algebraic Automorphisms 33
References 49
dc.language.isoen
dc.subject自同構zh_TW
dc.subject導算等式zh_TW
dc.subject導算zh_TW
dc.subjectderivationen
dc.subjectdifferential identityen
dc.subjectprimeen
dc.subjectautomorphismen
dc.title質環上之導算等式與代數自同構之常值zh_TW
dc.titleDifferential Identities and Constants of Algebraic Automorphisms in Prime Ringsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee李白飛,莊正良,林哲雄,王彩蓮
dc.subject.keyword導算,導算等式,自同構,zh_TW
dc.subject.keywordderivation,automorphism,prime,differential identity,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2006-06-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
325.34 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved