請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34136完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李秋坤 | |
| dc.contributor.author | Kun-Shan Liu | en |
| dc.contributor.author | 劉崑山 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:55:33Z | - |
| dc.date.available | 2007-07-10 | |
| dc.date.copyright | 2006-07-10 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-30 | |
| dc.identifier.citation | References
[Bei]: K.I. Beidar, { On functional identities and commuting additive mappings}, Comm. Algebra 26(6) (1998), 1819-1850. [BFLW]: K.I. Beidar, Y. Fong, P.-H. Lee and T.-L. Wong, { On additive maps of prime rings satisfying the Engel condition}, Comm. Algebra 25 (1997), no. 12, 3889-3902. [BMM]: K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, ``Rings with Generalized Identities', Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996. [Be1]: H.E. Bell and F. Guerriero, { Some conditions for finiteness and commutativity of rings}, Internat. J. Math. Math. Sci. 13 (1990), 535-544. [Be2]: H.E. Bell and A.A. Klein, { On finiteness of rings with finite maximal subrings}, Internat. J. Math. Math. Sci. 16 (1993), no. 2, 351-354. [Br1]: M. Bresar, { Centralizing mappings and derivations in prime rings}, J. Algebra 156 (1993), 385-394. [Br2]: M. Bresar and C.R. Miers, { Commuting maps on Lie ideals}, Comm. Algebra 23 (1995), no. 14, 5539-5553. [Cau]: G. Cauchon, { Les T-anneaux et les anneaux $grave{a}$ identit$acute{e}$s polynomiales noeth-$acute{e}$riness}, th$acute{e}$se, Orsay, 1977. [Ch]: J.-C. Chang, { On fixed power central $(alpha, eta)$-derivations}, Bull. Inst. Math. Acad. Sinica 15 (1987), 163-178. [ChLi]: J.-C. Chang and J.-S. Lin,{ $(alpha, eta)$-derivation with nilpotent values}, Chinese J. Math. 22 (1994), 349-355. [C1]: C.-L. Chuang, { { ext{ m GPI}}s having coefficients in Utumi quotient rings}, Proc. Amer. Math. Soc. 103 (1988), 723-728. [C2]: C.-L. Chuang, { Differential identities with automorphisms and antiautomorphisms, I}, J. Algebra 149 (1992), 371-404. [C3]: C.-L. Chuang, { Differential identities with automorphisms and antiautomorphisms, II}, J. Algebra 160 (1993), 292-335. [CL1]: C.-L. Chuang and T.-K. Lee, { Algebraic derivations with constants satisfying a polynomial identity}, Israel J. Math. 138 (2003), 43--60. [CL2]: C.-L. Chuang and T.-K. Lee, { Algebraic q-skew derivations}, J. Algebra 282 (2004), no.1, 1-22. [CL3]: C.-L. Chuang and T.-K. Lee, { q-Skew Derivations and Polynomial Identities}, Manuscripta Math. 116 (2005), no.2, 229-243. [CL4]: C.-L. Chuang and T.-K. Lee, { Identities with a single skew derivation}, J. Algebra 288(1) (2005), 59-77. [CL5]: C.-L. Chuang and T.-K. Lee, { Ore extensions which are GPI-rings}, submitted. [CLZ]: C.-L. Chuang, T.-K. Lee and Y. Zhou, { Constants of Algebraic Derivations in Prime Rings}, submitted. [Dr]: P.K. Draxl, ``Skew fields', London Math. Soc., Lecture Note Series, 81, Cambridge University Press, Cambridge, 1983. [He1]: I.N. Herstein, ``Noncommutative Rings', Carus mathematics monograph 15, 1968. [He2]: I.N. Herstein, ``Topics in Ring Theory', University of Chicago Press, Chicago, 1969. [Hi]: Y. Hirano, { On extensions of rings with finite additive index}, Math. J. Okayama Univ. 32 (1990), 93-95. [Hv]: B. Hvala, { Generalized derivations in rings}, Comm. Algebra 26(4) (1998), 1147-1166. [Ja]: N. Jacobson, ``PI-Algebras: an Introduction', Lecture Notes in Math. 441, Springer-Verlag, Berlin and New York, 1975. [Kl]: A.A. Klein, { The finiteness of a ring with a finite maximal subring}, Comm. Algebra 21(4) (1993), 1389-1392. [Kh1]: V.K. Kharchenko, { Generalized Identities with Automorphisms}, (Russian) Algebra i Logika 14 (1975), no. 2, 215-237, (English translation: Algebra and Logic 14 (1975), no. 2, 132-148.) [Kh2]: V.K. Kharchenko, { Differential identities of prime rings}, (Russian) Algebra i Logika 17 (1978), 220-238. (Engl. Transl., Algebra and Logic 17 (1978), 154-168.) [Kh3]: V.K. Kharchenko, { Differential identities of semiprime rings}, (Russian) Algebra i Logika 18 (1979), 86-119. (Engl. Transl., Algebra and Logic 18 (1979), 58-80.) [La]: T.J. Laffey, { A finiteness theorem for rings}, Proc. Roy. Irish Acad. Sect. A 92(2) (1992), 285-288. [L1]: T.-K. Lee, { Semiprime rings with differential identities}, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38. [L2]: T.-K. Lee, { Semiprime rings with hypercentral derivations}, Canad. Math. Bull. 38(4) (1995), 445-449. [L3]: T.-K. Lee, { Power reduction property for generalized identities of one-sided ideals}, Algebra Colloq. 3 (1996), 19-24. [L4]: T.-K. Lee, { Derivations and centralizing mappings in prime rings}, Taiwanese J. Math. 1 (1997), 333-342. [L5]: T.-K. Lee, { Generalized derivations of left faithful rings}, Comm. Algebra 27(8) (1999), 4057-4073. [L6]: T.-K. Lee, { $sigma$-commuting maps in semiprime rings}, Comm. Algebra 29(7) (2001), 2945-2951. [L7]: T.-K. Lee, { Posner's theorem for $(sigma, au)$-derivations and $sigma$-centralizing maps}, Houston J. Math. 30 (2004), no. 2, 309--320. [LL1]: T.-K. Lee and T.-C. Lee, { Commuting additive mappings in semiprime rings}, Bull. Inst. Math. Acad. Sinica 24 (1996), 259-268. [LL2]: T.-K. Lee and T.-C. Lee, { Derivations with algebraic values of bounded degree}, Comm. Algebra 27(4) (1999), 1911-1920. [Lu]: J. Luh, { A note on commuting automorphisms of rings}, Amer. Math. Monthly 77(1) (1970), 61-62. [Mar]: W.S. Martindale 3rd, { Prime rings satisfying a generalized polynomial identity}, J. Algebra 12 (1969), 576-584. [Mat]: J. Matczuk, { Extended centroids of skew polynomial rings }, Math. J. Okayama Univ. 30 (1988), 13--20. [Ma1]: J.H. Mayne, { Centralizing automorphisms of prime rings}, Canad. Math. Bull., 19 (1976), 113-115. [Ma2]: J.H. Mayne, { Centralizing automorphisms of Lie ideals in prime rings}, Canad. Math. Bull., 35 (1992), 510-514. [PJ]: K.-H. Park and Y.-S. Jung, { Skew-commuting and commuting mappings in rings}, Aequationes Math. 64 (2002), 136-144. [Po]: E.C. Posner, { Derivations in prime rings}, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. [Ro]: L.H. Rowen, { On rings with central polynomials}, J. Algebra 31 (1974), 393-426. [Vi]: O.M. Di Vincenzo, { A result on derivations with algebraic values}, Canad. Math. Bull. 29 (1986), 432-437. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34136 | - |
| dc.description.abstract | Abstract
This thesis focuses on differential identities and constants of algebraic automorphisms in prime rings. In Chapter 1 we prove that an algebra over a field with a finite dimensional maximal subalgebra must be finite dimensional. In Chapters 2 and 3 we consider certain differential identities in prime rings. Firstly, we show that if a prime algebra admits a nonzero generalized skew derivation with algebraic values of bounded degree, then the algebra must be a primitive ring with nonzero socle and its associated division algebra is a finite-dimensional central division algebra. Secondly, we determine the structure of a prime ring admitting an additive n-commuting map which is linear over its center. In Chapter 4 we consider constants of algebraic automorphisms in prime rings. Let R be a prime ring with extended centroid C. For an automorphism sig of R we let R^(sig)≡{x in R | sig(x)=x}, the subring of constants of sig on R. Suppose that the automorphism sig is algebraic over C. We give a complete characterization of the primeness and semiprimeness of the subring R^(sig). Moreover, if the subring R^(sig) is a prime PI-ring, we obtain the PI-degree of R^(sig) in terms of that of the whole ring R and the inner degree of the automorphism sig. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:55:33Z (GMT). No. of bitstreams: 1 ntu-95-F89221001-1.pdf: 333144 bytes, checksum: 0fe1b8bf2c3716bafeb8ae4c18311e17 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
Abstract Introduction 1 Chapter 0. Preliminaries 6 Chapter 1. Algebras with a Finite-Dimensional Maximal Subalgebra 12 Chapter 2. Generalized Skew Derivations with Algebraic Values of Bounded Degree 16 Chapter 3. n-Commuting Maps on Prime Rings 25 Chapter 4. Constants of Algebraic Automorphisms 33 References 49 | |
| dc.language.iso | en | |
| dc.subject | 自同構 | zh_TW |
| dc.subject | 導算等式 | zh_TW |
| dc.subject | 導算 | zh_TW |
| dc.subject | derivation | en |
| dc.subject | differential identity | en |
| dc.subject | prime | en |
| dc.subject | automorphism | en |
| dc.title | 質環上之導算等式與代數自同構之常值 | zh_TW |
| dc.title | Differential Identities and Constants of Algebraic Automorphisms in Prime Rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李白飛,莊正良,林哲雄,王彩蓮 | |
| dc.subject.keyword | 導算,導算等式,自同構, | zh_TW |
| dc.subject.keyword | derivation,automorphism,prime,differential identity, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-06-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 325.34 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
