Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.author"Jen-Huang, Jeng"en
dc.contributor.author鄭楨煌zh_TW
dc.date.accessioned2021-06-13T05:53:48Z-
dc.date.available2016-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-26
dc.identifier.citationchapter1
1. Vamsi K. Komarala, A. Louise Bradley, Yury P. Rakovich, Stephen J. Byrne, Yurii K. Gun'ko, and Andrey L. Rogach, Appl. Phys. Lett. 93, 123102 (2008).
2. J. R. Lakowicz, Principle of Fluorescence of Spectroscopy, 2nd ed. (Kluwer Academic/ Plenum, New York, 1999), p. 367.
3. Tolga Atay, Jung-Hoon Song, and Arto V. Nurmikko, Nano Letters, 4, p. 1627 (2004).
4. Baek-Hyun Kim, Chang-Hee Cho, Seong-Ju Park, Nae-Man Park, and Gun Yong Sung, Appl. Phys. Lett. 89, 063509 (2006).
5. Lin He, Michael D. Musick, Sheila R. Nicewarner, Frank G. Salinas, Stephen J. Benkovic, Michael J. Natan, and Christine D. Keating, J. Am. Chem. Soc. 122, p. 9071 (2000).
6. Alan Campion, Patanjali Kambhampati, Chem. Soc. Rev. 27, 241 (1998).
7. H Ebert, Rep. Prog. Phys. 59, 1665 (1996).
chapter2
1. H. Mattoussi, J. M. Mouro, E. Goodman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, J. Am. Chem. Soc. 112, 12142 (2000).
2. S. Coe, W. K. Woo, M. G. Bawendi, and V. Bulovic, Nature 420, 800 (2002).
3. P. Yu, K. Zhu, A. G. Norman, S Ferrere, A. J. Frank, and A. J. Nozik, J. Phys. Chem. B 110, 25451 (2006).
4. F. F. Amos, S. A. Morin, J. A. Streifer, R. J. Hamers, and S. Jin, J. Am. Chem. Soc.129, 14296 (2007).
5. G. Schmid, D. V. Talapin, E. V. Shevchenko, Self-Assembly of Metal Nanoparticles (G. Schmid Ed. Wiley-VCH: Weinheim, Germany) , p. 251 (2004).
6. A. P. Alivisatos, X. Peng, T. E. Wilson, K. P. Johnson, C. J. Loweth, M. P. J. Bruchez, and P. G. Schultz, Nature 382, 609 (1996).
7. A. L . Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, Adv. Funct. Mater. 12, 653 (2002).
8. Z. Adam Peng and X. G. Peng, J. Am. Chem. Soc. 123. 183 (2001).
9. Y. W. Cao and U. Banin, Angew. Chem. Int. Ed. 38, 3692 (1999).
10. C. T. Cheng, C. Y. Chen, C. W. Lai, W. H. Liu, S. C. Pu, P. T. Chou, Y. H. Chou, and H. T. Chiu, J. Mater. Chem. 15, 3409 (2005).
11. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Nature 383, 802 (1996).
12. R. G. Neuhauser, K. T. Shimizu, W. K. Woo, S. A. Empedocles, and M. G. Bawendi, Phys. Rev. Lett. 85, 3301 (2002).
13. O. Cherniavskaya, L. Chen, M. A. Islam, and L. Brus, Nano Lett. 3, 497 (2003).
14. M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and W. X. Ni, Appl. Phys. Lett. 82, 4785 (2003).
15. F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Böhrer, and D. Bimberg, Phys. Rev. B 57, 4635 (1998).
16. S. V. Zaitsev, A. A. Maksimov, V. D. Kulakovskii, I. I. T.artakovskii, D. R. Yakovlev, W. Ossau, L. Hansen, and G. Landwehr, J. Appl. Phys. 91, 652 (2002).
17. A. Pandey, P. G. Sionnest, Science 322, 929 (2008).
18. D. Bimberg and N. Ledentsov, J. Phys.:Condens. Matter 15, R1063 (2003).
19. H. Pettersson, L. Btááh, N. Carlsson, W. Seifert, and L. Samuelson, Appl. Phys. Lett. 79, 78 (2001).
20. E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).
21. T. Förster, Annu. Rev. Phys. 2, 55 (1948).
22. I. L. Medintz, L. Berti, T. Pons, A. F. Grimes, D. S. English, A. Alessandrini, P. Facci, and H. Mattoussi, Nano Lett. 7, 1741 (2007).
23. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature 429, 642 (2004).
24. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha and A. Madhukar, Nano Lett. 9, 4548 (2009).
25. U. Kreibig, and M. Vollmer, Optical Properties of Mental Clusters; Springer Series in Materials Science, Vol. 25 Springer, Berlin 1995, XVII, p. 532 (1995).
26. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).
27. S. K Kang, Soonwoo Chah, Chang Yeon Yun and Jongheop Yi, Korean J. Chem. Eng. 20, p. 1145 (2003).
28. G. Mie, Ann. Physik 25, 377 (1908).
29. R. Bardhan, N. K. Grady, and N. J. Halas small 4, 10, 1716 (2008).
30. P. Pramod and K. George Thomas, Adv. Mater. 20, 4300 (2008).
31. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Chem. Rev. 99, 2957 (1999).
32. O. L. Muskens, V. Giannini, J. A. Sa’nchez-Gil, J. Go’mez, Nano Lett. 7, 2871 (2007).
33. A. O. Govorov, and I. Carmeli, Nano Lett. 7, 620 (2007).
34. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Nano Lett. 5, 5 (2005).
35. M. Kirkengena, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102, 093713 (2007).
36. H. J Park, Doojin Vak, Y. Y Noh, Bogyu Lim, and D.Y Kim, Appl. Phys. Lett. 90, 161107 (2007).
37. J. Gersten, and A. Nitzan, J. Chem. Phys. 75, 785 (1981).
38. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, Nano Lett. 8, 4128 (2008)
chapter3
1. C. W. Lai, Y. H. Wang, Y. C. Chen, C. C. Hsieh, Borade Prajakta Uttam, J. K. Hsiao, C. C. Hsu and P. T. Chou , J. Mater. Chem., 19, p. 8314 (2009).
2. C. Y. Chen, C. T. Cheng, C. W. Lai, Y. H. Hu, P. T. Chou, Y. H . Chou, H. T. Chiu, Small, 1, p. 1215.
3. S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
4. I. Gorelikov and N. Matsuura, Nano Lett. 8, 369 (2008).
chapter4
1. C. H. Wang, C. W. Chen, Y. T. Chen, C. M. Wei, Y. F. Chen, C. W. Lai, M. L. Ho, P. T. Chou, and M. Hofmann, Appl. Phys. Lett. 96, 071906 (2010).
2. J. R. Lakowicz, Principle of Fluorescence of Spectroscopy, 2nd ed. (Kluwer Academic/ Plenum, New York, 1999), p. 367.
3. C.‐K. Sun, G. Wang, J. E. Bowers, B. Brar, H.‐R. Blank, H. Kroemer, and M. H. Pilkuhn, Appl. Phys. Lett. 68, 1543. (1996).
4. Mordechai Bixon and Joshua Jortner, J. Chem. Phys. 50, 3284 (1969).
5. M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldren, and P. M. Petroff, Phys. Rev. Lett. 62, 466 (1989).
6. Marisol Reyes-Reyes, Kyungkon Kim, and David L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
7. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, Phys. Chem. B, 106, p. 7619 (2002).
8. X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Phys. Rev. Lett. 93, 107403 (2004).
9. V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, Appl. Phys. Lett. 93, 123102 (2008).
10. Huanmian Chen, Henry L. Puhl 3rd. , Srinagesh V. Koushik, Steven S. Vogel and Stephen R. Ikeda , Volume 91, Issue 5 (2006).
11. .E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, Nano Lett. 5, p. 585 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34085-
dc.description.abstract本篇論文的研究在於探討量子點碲化鎘與第二型量子點碲化鎘/硒化鎘/硫化鋅所組成之複合物,在摻入奈米金柱且激發奈米金柱的表面電漿子之後,對於此兩種量子點間的能量傳遞與其發光機制的影響。藉由使用光激螢光光譜、時間解析螢光光譜及吸收光譜,我們研究碲化鎘藉由螢光共振能量傳遞的機制將載子傳遞至碲化鎘/硒化鎘/硫化鋅量子點並於此複合放光。在摻入奈米金柱與第二道激發光源之後,表面電漿子得以被激發,因而創造出一個更佳的共振環境,使得碲化鎘/硒化鎘/硫化鋅量子點發光的現象更加增強。藉此研究,我們希望這樣的成果有助於在光電元件方面的應用與製作。zh_TW
dc.description.abstractIn this thesis, we have demonstrated the fluorescence resonance energy transfer (FRET) between CdTe QDs and type II CdTe/CdSe/ZnS QDs. The results obtained by photoluminescence (PL), time-resolved photoluminescence (TRPL), and absorption measurements indicate that the energy of electron-hole pairs in CdTe QDs can be transferred to CdTe/CdSe/ZnS QDs via FRET. In addition, it is also found that the efficiency of FRET can be enhanced by surface plasmons. Based on the results, it should be very useful for many applications, such as in biosensors and other optoelectronics devices.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:53:48Z (GMT). No. of bitstreams: 1
ntu-100-R98222043-1.pdf: 1716778 bytes, checksum: 17c34202fb6ee2c62a87472d58ad0e22 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract II
List of Figures IV
Chapter 1 Introduction 1
Chapter 2 Experimental details and theoretical background 5
2.1 Colloidal quantum dots 5
2.2 Novel optical properties of type II quantum dots 6
2.3 Fluorescence resonance energy transfer effect in quantum dots 7
2.4 Novel optical properties of noble metal nanorods 8
2.5 Photoluminescence 9
2.5.1 Introduction 9
2.5.2 Photoluminescence setup 10
2.6 Time-resolved photoluminescence 11
2.6.1 Introduction 11
2.6.2 Conventional time-resolved photoluminescence setup 12
2.7 Absorption Spectroscopy 15
2.7.1 Introduction 15
2.7.2 Absorption spectroscopy setup 15
Chapter 3 Sample preparation 28
3.1 CdTe colloidal quantum dots 28
3.2 CdTe/CdSe/ZnS type II colloidal quantum dots 29
3.3 Gold nanorods and gold nanorods coated with SiO2 spacer 29
Chapter 4 Surface plasmon resonance enhanced energy transfer between CdTe and CdTe/CdSe/ZnS type II quantum dots 33
4.1 Introduction 33
4.2 Experiment 34
4.3 Results and Discussion 35
4.4 Summary 40
Chapter 5 Conclusion 44
dc.language.isoen
dc.subject螢光共振能量傳遞zh_TW
dc.subject碲化鎘zh_TW
dc.subject碲化鎘/硒化鎘/硫化鋅zh_TW
dc.subject奈米金柱zh_TW
dc.subject表面電漿zh_TW
dc.subjectFRETen
dc.subjectCdTeen
dc.subjectCdTe/CdSe/ZnSen
dc.subjectAu nanorodsen
dc.subjectsurface plasmonen
dc.title利用奈米金柱表面電漿增進碲化鎘和第二型量子點之間能量傳遞效率zh_TW
dc.titleSurface plasmon resonance enhanced energy transfer between CdTe and CdTe/CdSe/ZnS type II quantum dotsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁啟德,林泰源
dc.subject.keyword碲化鎘,碲化鎘/硒化鎘/硫化鋅,奈米金柱,表面電漿,螢光共振能量傳遞,zh_TW
dc.subject.keywordCdTe,CdTe/CdSe/ZnS,Au nanorods,surface plasmon,FRET,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2011-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved