Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33991
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芝珊
dc.contributor.authorChun-Chieh Tsengen
dc.contributor.author曾俊傑zh_TW
dc.date.accessioned2021-06-13T05:50:55Z-
dc.date.available2011-07-31
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-06
dc.identifier.citationAdams, M. H. (1959). Bacteriophages. Interscience Publishers Inc., New York, 450-456
Abad, F. X., Pinto, R. M. and Bosch, A. (1994). Survival of enteric viruses on environmental fomites. Applied and Environmental Microbiology 60:3704-3710.
Abbaszadegan, M., Stewart, P. and LeChevallier, M. (1999). A strategy for detection of viruses in groundwater by PCR. Applied and Environmental Microbiology 65:444-449.
Akers, T. G., Prato, C. M. and Dubovi, E. J. (1973). Airborne stability of simian virus 40. Applied Microbiology 26:146-148.
Bamford, D. H., Burnett, R. M. and Stuart, D. I. (2002). Evolution of viral structure. Theoretical Population Biology 61:461-470.
Benbough, J. E. (1969). Effect of relative humidity on survival of airborne semliki forest virus. Journal of General Virology 4:473-477.
Berg, G., Berman, D., Chang, S. L. and Clarke, N. A. (1966). A sensitive quantitative method for detecting small quantities of virus in large volumes of water. American Journal of Epidemiology 83:196-203.
Berrington, A. W. and Pedler, S. J. (1998). Investigation of gaseous ozone for MRSA decontamination of hospital side-rooms. Journal of Hospital Infection 40:61-65.
Borchardt, M. A., Bertz, P. D., Spencer, S. K. and Battigelli, D. A. (2003). Incidence of enteric viruses in groundwater from household wells in Wisconsin. Applied and Environmental Microbiology 69:1172-1180.
Brussaard, C. P. D. (2004). Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology 70:1506-1513.
Brussaard, C. P. D., Marie, D. and Bratbak, G. (2000). Flow cytometric detection of viruses. Journal of Virological Methods 85:175-182.
Bunning, G. and Hempel, D. C. (1996). Vital-fluorochromization of microorganisms using 3',6'-diacetylfluorescein to determine damages of cell membranes and loss of metabolic activity by ozonation. Ozone-Science and Engineering 18:173-181.
Bunsen, R. and Roscoe, H. (1862). Photochemische untersuchungen. Annual of Physical Chemistry 117:529-562.
Castberg, T., Larsen, A., Sandaa, R. A., Brussaard, C. P. D., Egge, J. K., Heldal, M., Thyrhaug, R., van Hannen, E. J. and Bratbak, G. (2001). Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Marine Ecology-Progress Series 221:39-46.
CDC (1994). Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care facilities. MMWR 43(RR-13):1-132.
Chan, C. H., Wu, M. C., Huang, C. T., Wu, K. G. and Liu, W. T. (1999). Genetic characterization of the hemagglutinin of two strains of influenza B virus co-circulated in Taiwan. Journal of Medical Virology 59:208-214.
Chang, L. Y., Tsao, K. C., Hsia, S. H., Shih, S. R., Huang, C. G., Chan, W. K., Hsu, K. H., Fang, T. Y., Huang, Y. C. and Lin, T. Y. (2004). Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. Journal of the American Medical Association 291:222-227.
Chapron, C. D., Ballester, N. A., Fontaine, J. H., Frades, C. N. and Margolin, A. B. (2000). Detection of astroviruses, enteroviruses, and adenovirus types 40 and 41 in surface waters collected and evaluated by the information collection rule and an integrated cell culture-nested PCR procedure. Applied and Environmental Microbiology 66:2520-2525.
Chen, F., Lu, J. R., Binder, B. J., Liu, Y. C. and Hodson, R. E. (2001). Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Applied and Environmental Microbiology 67:539-545.
Chen, H. L., Chiou, S. S., Hsiao, H. P., Ke, G. M., Lin, Y. C., Lin, K. H. and Jong, Y. J. (2004). Respiratory adenoviral infections in children: A study of hospitalized cases in southern Taiwan in 2001-2002. Journal of Tropical Pediatrics 50:279-284.
Chen, X. H., Wang, X. W. and Wu, W. Z. (2003). Diagnosis of iridovirus in large yellow croaker by PCR. Acta Oceanologica Sinica 22:635-641.
Couch, R. B., Cate, T. R., Gerone, P. J., Fleet, W. F., Lang, D. J., Griffith, W. R. and Knight, V. (1965a). Production of illness with a small-particle aerosol of coxsackie A21. Journal of Clinical Investigation 44:535-542.
Couch, R. B., Gerone, P. J., Cate, T. R., Griffith, W. R., Alling, D. W. and Knight, V. (1965b). Preparation and properties of a small-particle aerosol of coxsackie A21. Proceedings of the Society for Experimental Biology and Medicine 118:818-822.
Dahling, D. R. and Wright, B. A. (1988a). A comparison of recovery of virus from wastewaters by beef extract-celite, ferric-chloride, and filter concentration procedures. Journal of Virological Methods 22:337-346.
Dahling, D. R. and Wright, B. A. (1988b). Optimization of suspended cell method and comparison with cell monolayer technique for virus assays. Journal of Virological Methods 20:169-179.
Davis, P. M. and Phillpot.Rj (1974). Susceptibility of Vero line of African-Green Monkey Kidney-cells to human enteroviruses. Journal of Hygiene 72:23-30.
Demik, G. and Degroot, I. (1977). Mechanisms of inactivation of bacteriophage psi-X174 and its DNA in aerosols by ozone and ozonized cyclohexene. Journal of Hygiene 78:199-211.
Dore, K., Buxton, J., Henry, B., Pollari, F., Middleton, D., Fyfe, M., Ahmed, R., Michel, P., King, A., Tinga, C. and Wilson, J. B. (2004). Risk factors for salmonella typhimurium DT104 and non-DT104 infection: a Canadian multi-provincial case-control study. Epidemiology and Infection 132:485-493.
Dubovi, E. J. and Akers, T. G. (1970). Airborne stability of tailless bacterial viruses S-13 and MS-2. Applied Microbiology 19:624-628.
Dumyahn, T. and First, M. (1999). Characterization of ultraviolet upper room air disinfection devices. American Industrial Hygiene Association Journal 60:219-227.
Finch, G. R., Smith, D. W. and Stiles, M. E. (1988). Dose-response of Escherichia-Coli in ozone demand-free phosphate buffer. Water Research 22:1563-1570.
Foarde, K. K., VanOsdell, D. W. and Steiber, R. S. (1997). Investigation of gas-phase ozone as a potential biocide. Applied Occupation and Environmental Hygiene 12:535-542.
Gagnon, G. A., Rand, J. L., O'Leary, K. C., Rygel, A. C., Chauret, C. and Andrews, R. C. (2005). Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Research 39:1809-1817.
Galasso, G. J. (1965). Effect of particle aggregation on survival of irradiated vaccinia virus. Journal of Bacteriology 90:1138-1142.
Gantzer, C., Maul, A., Audic, J. M. and Schwartzbrod, L. (1998). Detection of infectious enteroviruses, enterovirus genomes, somatic coliphages, and Bacteroides fragilis phages in treated wastewater. Applied and Environmental Microbiology 64:4307-4312.
Gantzer, C., Senouci, S., Maul, A., Levi, Y. and Schwartzbrod, L. (1999). Enterovirus detection from wastewater by RT-PCR and cell culture. Water Science and Technology 40:105-109.
Genthe, B., Strauss, N., Seager, J., Vundule, C., Maforah, F. and Kfir, R. (1997). The effect of type of water supply on water quality in a developing community in South Africa. Water Science and Technology 35:35-40.
Gerba, C. P., Gramos, D. M. and Nwachuku, N. (2002). Comparative inactivation of enteroviruses and adenovirus 2 by UV light. Applied and Environmental Microbiology 68:5167-5169.
Girones, R., Puig, M., Allard, A., Lucena, F., Wadell, G. and Jofre, J. (1995). Detection of adenovirus and enterovirus by PCR amplification in polluted waters. Water Science and Technology 31:351-357.
Goldner, W. L., Brown, R. B., Lundy, L. E. and Bradley, S. (1980). Nosocomial infections in an obstetric and gynecologic hospital. Journal of Reproductive Medicine 25:145-149.
Hara, S., Terauchi, K. and Koike, I. (1991). Abundance of viruses in marine waters - assessment by epifluorescence and transmission electron-microscopy. Applied and Environmental Microbiology 57:2731-2734.
Harstad, J. B. (1965). Sampling submicron T1 bacteriophage aerosols. Applied Microbiology 13:899-908.
Hatch, M. T. and Warren, J. C. (1969). Enhanced recovery of airborne T3 coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique. Applied Microbiology 17:685-689.
Havelaar, A. H., Butler, M., Farrah, S. R., Jofre, J., Marques, E., Ketratanakul, A., Martins, M. T., Ohgaki, S., Sobsey, M. D. and Zaiss, U. (1991). Bacteriophages as model viruses in water-quality control. Water Research 25:529-545.
Heim, A., Ebnet, C., Harste, G. and Pring-Akerblom, P. (2003). Rapid and quantitative detection of human adenovirus DNA by real-time PCR. Journal of Medical Virology 70:228-239.
Hennes, K. P. and Suttle, C. A. (1995). Direct counts of viruses in natural-waters and laboratory cultures by epifluorescence microscopy. Limnology and Oceanography 40:1050-1055.
Hofmann, R., Andrews, R. C. and Ye, Q. (1999). Impact of giardia inactivation requirements on ClO2 by-products. Environmental Technology 20:147-158.
Huang, J. L., Wang, L., Ren, N. Q., Liu, X. L., Sun, R. F. and Yang, G. L. (1997). Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Research 31:455-460.
Hunt, N. K. and Marinas, B. J. (1999). Inactivation of Escherichia coli with ozone: Chemical and inactivation kinetics. Water Research 33:2633-2641.
Ijaz, M. K., Karim, Y. G., Sattar, S. A. and Johnson-Lussenburg, C. M. (1987). Development of methods to study the survival of airborne viruses. Journal of Virology Methods 18:87-106.
Ijaz, M. K., Sattar, S. A., Alkarmi, T., Dar, F. K., Bhatti, A. R. and Elhag, K. M. (1994). Studies on the survival of aerosolized bovine rotavirus (Uk) and a murine rotavirus. Comparative Immunology Microbiology and Infectious Diseases 17:91-98.
Jensen, M. M. (1964). Inactivation of airborne viruses by ultraviolet irradiation. Applied Microbiology 12:418-420.
Katayama, H., Shimasaki, A. and Ohgaki, S. (2002). Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Applied and Environmental Microbiology 68:1033-1039.
Kim, C. K., Gentile, D. M. and Sproul, O. J. (1980). Mechanism of Ozone Inactivation of Bacteriophage-F2. Applied and Environmental Microbiology 39:210-218.
Kim, J. G., Yousef, A. E. and Chism, G. W. (1999). Use of ozone to inactivate microorganisms on lettuce. Journal of Food Safety 19:17-34.
Komanapalli, I. R. and Lau, B. H. S. (1998). Inactivation of Bacteriophage λ, Escherichia coli, and Candida albicans by ozone. Applied Microbiology and Biotechnology 49:766-769.
Kowalski, W. J., Bahnfleth, W. P. and Rosenberger, J. L. (2003). Dimensional analysis of UVGI air disinfection systems. HVAC and Research 9:347-362.
Kowalski, W. J., Bahnfleth, W. P. and Whittam, T. S. (1998). Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus. Ozone-Science and Engineering 20:205-221.
Lee, S. H. and Kim, S. J. (2002). Detection of infectious enteroviruses and adenoviruses in tap water in urban areas in Korea. Water Research 36:248-256.
Li, C. S., Hao, M. L., Lin, W. H., Chang, C. W. and Wang, C. S. (1999). Evaluation of microbial samplers for bacterial microorganisms. Aerosol Science and Technology 30:100-108.
Li, C. S. and Lin, Y. C. (1999). Sampling performance of impactors for bacterial bioaerosols. Aerosol Science and Technology 30:280-287.
Li, C. S. and Wang, Y. C. (2003). Surface germicidal effects of ozone for microorganisms. AIHA Journal 64:533-537.
Lidwell, O. M. (1994). Ultraviolet-Radiation and the control of airborne contamination in the operating-Room. Journal of Hospital Infection 28:245-248.
Lin, C. Y. and Li, C. S. (2002). Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Science and Technology 36:474-478.
Lin, C. Y. and Li, C. S. (2005). Evaluation of surface-disinfection by ultraviolet germicidal irradiation. Journal of Occupational and Environmental Hygiene:submitted.
Lin, W. H. and Li, C. S. (1999a). Collection efficiency and culturability of impingement into a liquid for bioaerosols of fungal spores and yeast cells. Aerosol Science and Technology 30:109-118.
Lin, W. H. and Li, C. S. (1998). The effect of sampling time and flow rates on the bioefficiency of three fungal spore sampling methods. Aerosol Science and Technology 28:511-522.
Lin, W. H. and Li, C. S. (1999b). Evaluation of impingement and filtration methods for yeast bioaerosol sampling. Aerosol Science and Technology 30:119-126.
Lodder, W. J., Vinje, J., van de Heide, R., Husman, A. M. D., Leenen, E. and Koopmans, M. P. G. (1999). Molecular detection of Norwalk-like caliciviruses in sewage. Applied and Environmental Microbiology 65:5624-5627.
Maranger, R. and Bird, D. F. (1995). Viral Abundance in Aquatic Systems - a Comparison between marine and fresh-Waters. Marine Ecology-Progress Series 121:217-226.
Marie, D., Brussaard, C. P. D., Thyrhaug, R., Bratbak, G. and Vaulot, D. (1999). Enumeration of marine viruses in culture and natural samples by flow cytometry. Applied and Environmental Microbiology 65:45-52.
May, K. R. (1966). Multistage Liquid Impinger. Bacteriological Reviews 30:559-&.
Meng, Q. S. and Gerba, C. P. (1996). Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation. Water Research 30:2665-2668.
Moe, K. and Harper, G. J. (1983). The effect of relative-humidity and temperature on the survival of bovine rotavirus in aerosol. Archives of Virology 76:211-216.
Moore, B. E., Sagik, B. P. and Sorber, C. A. (1979). Procedure for the recovery of airborne human enteric viruses during spray irrigation of treated wastewater. Applied and Environmental Microbiology 38:688-693.
Mudd, J. B., Leavitt, R., Ongun, A. and McManus, T. T. (1969). Reaction of ozone with amino acids and proteins. Atmospheric Environment 3:669-682.
Myatt, T. A., Johnston, S. L., Rudnick, S. and Milton, D. K. (2003). Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay. BMC Public Health 3.
Nemo, G. J. and Cutchins, E. C. (1966). Effect of Visible light on canine distemper virus. Journal of Bacteriology 91:798-802.
Nijhuis, M., van Maarseveen, N., Schuurman, R., Verkuijlen, S., de Vos, M., Hendriksen, K. and van Loon, A. M. (2002). Rapid and sensitive routine detection of all members of the genus enterovirus in different clinical specimens by real-time PCR. Journal of Clinical Microbiology 40:3666-3670.
Payment, P. and Armon, R. (1989). Virus removal by drinking-water treatment processes. Critical Reviews in Environmental Control 19:15-31.
Peccia, J., Werth, H. M., Miller, S. and Hernandez, M. (2001). Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria. Aerosol Science and Technology 35:728-740.
Pryor, W. A., Das, B. and Church, D. F. (1991). The ozonation of unsaturated fatty acids: aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chemical Research in Ttoxicology 4:341-348.
Sharp, D. G. (1939). The lethal action of short ultraviolet rays on several common pathogenic bacteria. Journal of Bacteriology 37:447-460.
Shieh, Y. S. C., Baric, R. S. and Sobsey, M. D. (1997). Detection of low levels of enteric viruses in metropolitan and airplane sewage. Applied and Environmental Microbiology 63:4401-4407.
Shin, G. A. and Sobsey, M. D. (2003). Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water. Applied and Environmental Microbiology 69:3975-3978.
Simonet, J. and Gantzer, C. (2006). Degradation of the Poliovirus 1 genome by chlorine dioxide. Journal of Applied Microbiology 100:862-870.
Stone, B., Burrows, J., Schepetiuk, S., Higgins, G., Hampson, A., Shaw, R. and Kok, T. W. (2004). Rapid detection and simultaneous subtype differentiation of influenza A viruses by real time PCR. Journal of Virological Methods 117:103-112.
Summer, W. (1962). Ultraviolet and infrared engineering. Interscience Publishers, New York.
Thurston-Enriquez, J. A., Haas, C. N., Jacangelo, J. and Gerba, C. P. (2005). Inactivation of enteric adenovirus and feline calicivirus by chlorine dioxide. Applied and Environmental Microbiology 71:3100-3105.
Thurston-Enriquez, J. A., Haas, C. N., Jacangelo, J., Riley, K. and Gerba, C. P. (2003). Inactivation of feline calicivirus and adenovirus type 40 by UV radiation. Applied and Environmental Microbiology 69:577-582.
Trouwborst, T. and de Jong, J. C. (1973). Interaction of some factors in the mechanism of inactivation of bacteriophage MS2 in aerosols. Applied Microbiology 26:252-257.
Tseng, C. C. and Li, C. S. (2005a). Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science 36:593-607.
Tseng, C. C. and Li, C. S. (2005b). Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation. Aerosol Science and Technology 39:1136-1142.
Tseng, C. C. and Li, C. S. (2006). Ozone for Inactivation of Aerosolized Bacteriophages. Aerosol Science and Technology inpress.
Tseng, R. K., Chen, H. Y. and Hong, C. B. (1996). Influenza virus infections in Taiwan from 1979 to 1995. Japanese Journal of Medical Science and Biology 49:77-93.
Tyrrell, D. A. J. (1967). Virus causes of coughs and colds. Helvetica Medica Acta 34:52-59.
USEPA (1989. Office of Water). Guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources. US Environmental Protection Agency, Washington, DC.
Veschetti, E., Cittadini, B., Maresca, D., Citti, G. and Ottaviani, M. (2005). Inorganic by-products in waters disinfected with chlorine dioxide. Microchemical Journal 79:165-170.
Vidaver, A. K., Koski, R. K. and Vanetten, J. L. (1973). Bacteriophage Phi6 lipid-containing virus of pseudomonas-phaseolicola. Journal of Virology 11:799-805.
Wallis C., Grinstein S., Melnick J. L., and Field, J.E. (1969). Concentration of viruses from sewage and excreta on insoluble polyelectrolytes. Applied Microbiology 18:1007-1014.
Woolwine, J. D. and Gerberding, J. L. (1995). Effect of testing method on apparent activities of antiviral disinfectants and antiseptics. Antimicrobial Agents and Chemotherapy 39:921-923.
Wyckoff, R. W. G. (1931). The killing of colon bacilli by ultraviolet light. Journal of General Physiology 15:351-361.
Wyckoff, R. W. G. and Rivers, T. M. (1930). The effect of cathode rays upon certain bacteria. The Journal of Experimental Medicine 51:921-932.
Zeterber.Jm (1973a). Review of respiratory virology and spread of virulent and possibly antigenic viruses via air-conditioning systems.1. Annals of Allergy 31:228-234.
Zeterber.Jm (1973b). Review of respiratory virology and spread of virulent and possibly antigenic viruses via air-conditioning systems.2. Annals of Allergy 31:291-299.
Zhou, H. D. and Smith, D. W. (1995). Evaluation of parameter-estimation methods for ozone disinfection kinetics. Water Research 29:679-686.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33991-
dc.description.abstract病毒是屬於絕對寄生的微生物,經由研究指出,部分病毒已被確認是人或動物的致病菌。病毒會經由許多的傳播途徑對人體產生健康威脅,如:空氣、飛沫、水、血液以及病媒等途徑,在這些傳播途徑之中,由於病毒經由空氣或飛沫傳播是最快速的,因此對人體健康是最具威脅的傳播途徑之一。有鑑於SARS疫情爆發以及腸病毒之流行,使我們有必要針對病毒氣膠做進一步的研究,建立其採樣分析技術,並利用該技術針對高風險之環境進行監測。本研究之目的在建立病毒氣膠之採樣分析技術與評估各種控制技術的控制效率,以確實達到公共衛生上預防疾病的目的。本研究首先進行病毒氣膠之採樣及分析評估,並在實驗室反應腔產生具有不同核酸形式(dsDNA, ssDNA, dsRNA, ssRNA)以及外型之病毒氣膠,同時利用不同採樣方法(Andersen impactor, AGI-30 impingers, gelatin filter 和 Nuclepore filter)來評估採樣器對病毒氣膠之收集效率。經由結果顯示,病毒的外型構造以及是否具有套膜均會影響其採樣效率。對於親水性的病毒(不具套膜)來說,Andersen impactor, impinger, and gelatin filter 均能有效的捕集病毒氣膠,至於Nuclepore filter,由於其在採樣以及萃取的過程中會使病毒去活化,因此其採樣效率較低。另外,對於具有套膜的病毒來說,本研究中各種採樣器對其採樣效率均相當低,主要是因為套膜對於環境壓力(Environmental Stress)相當敏感,採樣過程中的所產生的採樣壓力會對病毒造成去活化的影響。
在病毒的分析方法方面,為發展快速定量病毒之方法以彌補傳統培養定量方法(plaque assay)之不足,本研究利用同步定量PCR (Real-Time Quantitative PCR),建立空氣中重要的病毒氣膠(如腸病毒、流行性感冒病毒以及腺病毒)之最佳化採樣及分析方法,以進行病毒氣膠之環境監測。本研究成功的利用同步定量PCR監測醫院急診室小兒部門、小兒科門診間與候診區空氣中的病毒氣膠,此方法對於空氣中腸病毒的偵測極限最低可達34 copies/m3,流感病毒為160 copies/m3,而腺病毒可達10 copies/m3。結果顯示空氣中可偵測到的病毒種類與病人症狀間具有高度的相關性,同時病毒氣膠的濃度也會隨著病人的聚集而升高。在空氣中可以偵測到這些病毒代表這三種病毒是非常有可能以空氣傳播的,特別是腸病毒,在過去腸病毒的傳播途徑都是由呼吸道或是糞便是否能分離出腸病毒來做判斷,並沒有一個實際的環境監測研究來做這樣的驗證。雖然經由本研究可以在空氣中偵測到這些病毒,但直到目前為止,想要瞭解空氣中的病毒氣膠是否具感染力仍需要進一步的研究。
最後,除了建立病毒氣膠之採樣及分析方法外,本研究也評估紫外光、臭氧以及氯對病毒氣膠、表面病毒與水中病毒之控制效率。在病毒氣膠與表面病毒方面,進行的是紫外線以及臭氧的殺菌效率評估,此兩種方法都是常用且有效的微生物控制技術,結果顯示紫外線與臭氧對於病毒氣膠以及表面病毒都具有良好的去除效果,且紫外線與臭氧劑量都與病毒的存活率有著良好的劑量效應關係。在紫外線方面,結果發現單股RNA/DNA病毒對紫外線的易感受性較雙股RNA/DNA病毒高,而提高相對濕度可降低病毒對紫外線的易感受性。就臭氧而言,病毒蛋白質髓鞘的組成越簡單對臭氧的易感受性越高,而提高相對濕度反而會增加病毒對臭氧的易感受性,這與臭氧會與水氣反應產生反應性的自由基有關。而在水體病毒控制方面,則是評估常用的加氯消毒以及臭氧水對病毒感染力的影響,結果顯示病毒對氯與臭氧的易感受性與病毒蛋白質髓鞘的構造有關,同時氯與臭氧的劑量都與病毒的存活率有良好的劑量效應關係。經本研究的結果顯示,對病毒的去活化效果與不同方法的殺菌機制有關,在水中的加氯以及加臭氧消毒均能在低濃度以及短暴露時間內處理大量的病毒。雖然目前美國環保署所規定的Ct值也都能夠有效的去除本研究所選擇的四種指標病毒,但在未來的研究及應用中,不同的病毒指標,病毒濃度以及處理水的種類等都應該做進一步的探討。
zh_TW
dc.description.abstractViruses are obligate parasites and are pathogenic to humans and animals. Recently, Severe Acute Respiratory Syndrome (SARS) virus and enterovirus have attracted public attention. In order to understand the health risk from virus exposure, this study was to establish of methods for sampling and analysis virus-containing aerosols. Furthermore, the effectiveness of different microbial control methods for inactivating viruses should be investigated for virus monitoring and control strategy. In this study, bacteriophages were surrogates for mammalian viruses in assessing sampling efficiency of Andersen impactor, impingers, gelatin filter and Nuclepore filter. Our results demonstrated that virus particle morphology with/without envelope could significantly affect virus sampling performance. For hydrophilic virus, Andersen impactor, impinger, and gelatin filter were likely to perform better than Nuclepore filter. The recovery of lipid-envelope virus sensitive to sampling stress was very low.
In the past years, traditional cell culture was the major method for detecting viruses, however, Polymerase Chain Reaction (PCR) are considered to be more rapid, sensitive, and specific. Therefore, establishment of nonculture based method (Real-time quantitative PCR) for viruses quantification are needed. Therefore, we established the optimal sampling and analysis methods for virus monitoring in hospital. An environmental monitoring for enterovirus, influenza virus and adenovirus in hospital emergency department, consulting room and waiting room of pediatrics was conducted to investigate the major transmission route and risk factors of virus infection. From our findings, the real-time PCR method could perform lowest measurements of 34 copies/m3, 160 copies/m3 and 10 copies/m3for Enterovirus, Influenza virus and Adenovirus, respectively. The virus species in air were highly related to the patients’ syndromes. Moreover, virus concentration increased as the numbers of patient increased. The detection of influenza virus, adenovirus and enterovirus in air suggests that these viruses could be an opportunistic airborne infection. Especially for enterovirus, the potential droplet transmission route was only supposed by virus was detected from respiratory/fecal specimens or not. From our current study, the possibility of aerosol infectious droplet spreading of the enterovirus may prove for this apparent risk of transmission. Up to now, detection of viable virus in environmental air samples is problematic. Further studies are needed to modify the method for getting the viable results of virus-containing aerosol.
Finally, different kinds of disinfection methods were assessed for different species of virus in either aerosol droplets, surface medium or water medium. The potential disinfection methods included UV, ozone and chlorine. Viruses in air and on surface with single-stranded nucleic acid were more susceptible to UV inactivation than were those with double-stranded ones. For all tested viruses by the same inactivation method, the UVGI dose at 85% RH was higher than that at 55% RH. For ozonation, viruses with more complex capsid architectures were observed to be less susceptible to ozone inactivation than those with simple ones. For all tested viruses at the same inactivation, the ozone concentration at 85% RH was lower than that at 55% RH. This might be related to generation of more radicals from ozone reacted with more water vapor at higher RH. For virus control in water, it was demonstrated that survival fractions of all tested phages were found to decrease exponentially with increasing chlorine and ozone doses. The results of this study indicate that the microbicidal activity of chorine and ozone is greatly affected by the applied dose, the presence of virus capsid protein and envelope. Chlorination and ozonation have the advantage of having a strong effect on some types of viruses even low treatment doses and short contact times are applied. Current Ct values supposed by USEPA are sufficient for virus inactivation by ozone and chlorine. However, virus specie, concentration and the water type should be further considered.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:50:55Z (GMT). No. of bitstreams: 1
ntu-95-F90844007-1.pdf: 1331370 bytes, checksum: 3d9f796cbb1cb948076809fe6a026c2b (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 I
ABSTRACT III
LIST OF TABLE VII
LIST OF FIGURE VIII
LIST OF FIGURE VIII
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE REVIEW 4
2.1 INTRODUCTION OF ENVIRONMENTAL VIROLOGY 5
2.2 VIRUS SAMPLING 8
2.3 VIRUS QUANTIFICATION 11
2.4 ENVIRONMENTAL MONITORING OF ENTEROVIRUS, INFLUENZA VIRUS AND ADENOVIRUS 15
2.5 VIRUS CONTROL TECHNIQUES 20
CHAPTER 3. OBJECTIVES OF THE STUDY 24
3. OBJECTIVES OF THE STUDY 25
CHAPTER 4. EVALUATION OF THE COLLECTION EFFICIENCY OF BIOAEROSOL SAMPLERS FOR VIRUS-CONTAINING AEROSOLS. 28
CHAPTER 5. ENVIRONMENTAL MONITORING FOR VIRUS-CONTAINING AEROSOLS IN THE HOSPITAL BY REAL-TIME QUANTITATIVE PCR. 46
5.1 ANALYSIS OF FLUORESCENCE SIGNALS WITH THE LIGHTCYCLER FOR VIRUS-CONTAINING AEROSOLS 47
5.2 ENVIRONMENTAL MONITORING FOR VIRUS-CONTAINING AEROSOLS IN HOSPITAL 53
CHAPTER 6. INACTIVATION EVALUATION OF VIRUSES BY ULTRAVIOLET, OZONE AND CHLORINE. 62
6.1 CONTROL ASSESSMENT OF VIRUS-CONTAINING AEROSOLS 63
6.2 CONTROL ASSESSMENT OF VIRUSES ON SURFACE 78
6.3 CONTROL ASSESSMENT OF VIRUSES IN WATER 95
6.4 CONCLUSIONS 111
REFERENCES 113
APPENDIX I 121
APPENDIX II 132
dc.language.isoen
dc.subject環境監測zh_TW
dc.subject病毒zh_TW
dc.subject同步定量PCRzh_TW
dc.subject紫外線zh_TW
dc.subject臭氧zh_TW
dc.subject氯zh_TW
dc.subjectEnvironmental Monitoringen
dc.subjectVirusen
dc.subjectReal-time quantitative PCRen
dc.subjectUVen
dc.subjectOzoneen
dc.subjectChlorineen
dc.title病毒氣膠環境監測與控制技術評估zh_TW
dc.titleEnvironmental Monitoring and Inactivation Evaluation of Virus-Containing Aerosolsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇慧貞,蔣本基,張鑾英,蔡春進,陳志傑,宋鴻樟
dc.subject.keyword病毒,同步定量PCR,紫外線,臭氧,氯,環境監測,zh_TW
dc.subject.keywordVirus,Real-time quantitative PCR,UV,Ozone,Chlorine,Environmental Monitoring,en
dc.relation.page132
dc.rights.note有償授權
dc.date.accepted2006-07-06
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved