Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭正邦
dc.contributor.authorChia-Hung Linen
dc.contributor.author林家弘zh_TW
dc.date.accessioned2021-06-13T05:49:46Z-
dc.date.available2006-07-14
dc.date.copyright2006-07-14
dc.date.issued2006
dc.date.submitted2006-07-06
dc.identifier.citation[1] J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits, New York: Wiley, 2001.
[2] C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, and P. Tobin, “80nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., 2001, pp. 651-654.
[3] K. G. Anil, A. Veloso, S. Kubicek, T. Schram, E. Augendre, J. F. de Marneffe, K. Devriendt, A. Lauwers, S. Brus, K. Henson, and S. Biesemans, “Demonstration of fully Ni-silicided metal gates on HfO2 based high-k gate dielectrics as a candidate for low power applications,” in VLSI Symp. Tech. Dig., 2004, pp. 190-191.
[4] A. Vandooren, S. Egley, M. Zavala, T. Stephens, L. Mathew, M. Rossow, A.Thean, A. Barr, Z. Shi, T. White, D. Pham, J. Conner, L. Prabhu, D. Triyoso, J. Schaeffer, D. Roan, B. Y. Nguyen, M. Orlowski, and J. Mogab, “50nm FD SOI CMOS technology with HfO2 gate dielectric,” IEEE Trans. Nanotechnol., vol. 2, no. 4, pp. 324-328, Dec. 2003.
[5] A. Vandooren, A. Barr, L. Mathew, T. R. White, S. Egley, D. Pham, M. Zavala, S. Samavedam, J. Schaeffer, J. Conner, B. Y. Nguyen, B. E. White, Jr., M. K. Orlowski, and J. Mogab, “Fully-depleted SOI devices with TaSiN gate, HfO2 gate dielectric, and elevated source/drain extensions,” IEEE Electron Device Lett., vol. 24, no. 5, pp. 342-344, May 2003.
[6] S. C. Lin and J. B. Kuo, “Modeling the fringing electric field effect on the threshold voltage of FD SOI NMOS devices with the LDD/sidewall oxide spacer structure,” IEEE Trans. Electron Devices, Vol. 50, no. 12, pp.2559-2564, Dec. 2003.
[7] S. C. Lin and J. B. Kuo, “Fringing-induced barrier lowering(FIBL) effects of 100nm FD SOI NMOS devices with high permittivity gate dielectrics and LDD/sidewall oxide spacer,” in Proc. SOI, Oct. 2002, pp. 93-94.
[8] G. C. Y. Yeap, S. Kirishnan, and M. R. Lin, “Fringing-induced barrier lowering(FIBL) in sub-100nm MOSFETs with high-k gate dielectrics,” Electron. Lett., vol. 34, no. 11, pp. 1150-1152, May 1998.
[9] D. L. Kencke, W. Chen, H. Wang, S. Mudanai, Q. Ouyang, A. Tasch, and S. Banerjee, “Source-side barrier effects with very high-k dielectrics in 50nm Si MOSFETs,” in Proc. Device Research Conf. Dig., Jun. 1999, pp. 22-23.
[10] N. R. Mohapatra, M. P. Desai, S. G. Narendra, and V. R. Rao, “Modeling of parasitic capacitances in deep submicrometer conventional and high-k dielectric MOS transistors,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp.959-966, Apr. 2003.
[11] N. R. Mohapatra, M. P. Desai, S. G. Narendra, and V. R. Rao, “The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance,” IEEE Trans. Electron Devices, vol. 49, no. 5, pp. 826-831, May 2002.
[12] MEDICI, User Guide, Version 2003.12, Synopsys, Mountain View, CA.
[13] C. H. Choi, J. S. Goo, T. Y. Oh, Z. Yu, R. W. Dutton, A. Bayoumi, M. Cao, P. V. Voorde, D. Vook, and C. H. Diaz, “MOS C-V characterization of ultrathin gate oxide thickness (1.3-1.8nm),” IEEE Electron Device Lett., vol. 20, no. 6, pp. 292-294, Jun. 1999.
[14] C. H. Choi, Y. Wu, J. S. Goo, Z. Yu, and R. W. Dutton, “Capacitance reconstruction from measured C-V in high leakage nitride/oxide MOS,” IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1843-1850, Oct. 2000.
[15] Y. C. Yeo, T. J. King, and C. Hu, “MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1027-1035, Apr. 2003.
[16] D. E. Ward and R. W. Dutton, “A charge-oriented model for MOS transistor capacitance,” IEEE J. Solid State Circuits, vol. SSC-13, no. 5, pp.703-708, Oct. 1978.
[1] G. Timp et al., “Low-Leakage, Ultra-thin Gate Oxides for Extremely High Performance Sub-100nm nMOSFETs,” IEDM Digest, pp. 930-932, 1997.
[2] H. Iwai and H. S. Momose, “Ultra-Thin Gate Oxides – Performance and Reliability,” IEDM Digest, pp. 163-166, 1998.
[3] Y. Kim, C. Lim, C. D. Young, K. Matthews, J. Barnett, B. Foran, A. Agarwal, G. A. Brown, G. Bersuker, P. Zeitzoff, M. Gardner, R. W. Murto, L. Larwon, C. Metzner, S. Kher, and H. R. Huff, “Conventional Poly-Si Gate MOS – Transistors with a Novel, Ultra-thin Hf-oxide Layer,” Dig. Of Symp. VLSI Tech, pp. 167-168, 2003.
[4] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo and T. P. Ma, “Direct Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric,” IEEE Electron Dev Lett, Vol. 21, No. 11, pp. 540-542, Nov. 2000.
[5] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M. R. Lin, “Limits of Gate-Oxide Scaling in Nano-Transistors,” Digest of Symp. VLSI Tech, pp. 90-91, 2000.
[6] W. K. Shih, E. X. Wang, S. Jallepalli, F. Leon, C. M. Maziar and A. F. Tasch, Jr., “Modeling Gate Leakage Current in NMOS Structures Due to Tunneling Through an Ultra-Thin Oxide,” Solid State Electronics, Vol. 42, No. 6, pp. 997-1006, 1998.
[7] F. Lime, R. Clerc, G. Ghibaudo, G. Pananakakis, and G. Guegan, “Impact of Gate Tunneling Leakage on the Operation of NMOS Transistors with Ultra-Thin Gate Oxide,” Microelectronic Engineering, Vol. 59, pp. 119-125, 2001.
[8] C. H. Choi, K. Y. Nam, and R. W. Dutton, “Impact of Gate Direct Tunneling Current on Circuit Performance,” IEEE Trans. Electron Devices, Vol. 48, No. 12, pp. 2823-2829, Dec. 2000.
[9] D. E. Ward and R. Wu. Dutton, “A Charge-Oriented Model for MOS Transistor Capacitors,” IEEE J. Solid-State Circuits, Vol. 13, No. 5, pp. 703-708, 1978.
[10] J. B. Kuo, R. W. Dutton and B.A. Wooley, “MOS Pass-Transistor Turn-off Transisent Analysis,” IEEE Trans. Electron Devices, Vol. 33, No. 10, pp. 1545-1555, Oct. 1986.
[11] J. R. Burns, “Large-Signal Transit-Time Effects in the MOS Transistors,” RCA Rev., pp. 15-35, March 1969.
[12] H. C. Chow, W. S. Feng, and J. B. Kuo, “An Improved Analytical Short-Channel MOSFET Model Valid in All Regions of Operation for Analog/Digital Circuit Simulation,” IEEE Trans. Computer-Aided Design, Vol. 11, No. 12, pp.1522-1528, Dec. 1992.
[13] K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Trans. Electron Devices, Vol. 42, No. 5, pp. 761-767, May 1995.
[14] W. Lee and C. Hu, “Modeling CMOS Tunneling Currents Through Ultrathin Gate Oxide Due to Conduction and Valence Band Electron and Hole Tunneling,” IEEE Trans. Electron Devices, Vol. 48, No. 7, pp. 1366-1373, July 2001.
[15] Y. Taur and T. H. Ning, “Fundamental of Modern VLSI Devices,” Cambridge Univ. Press, 1998.
[16] P. K. Ko, “Hot-Electron Effects in MOSFETs,” PhD dissertation, Univ of California, Berkeley, June 1982.
[17] C. H. Lin, J. B. Kuo, K. W. Su and S. Liu, “Partitioned Gate Tunneling Current Model Considering Distributed Effect for CMOS Devices with Ultrathin (1nm) Gate Oxide,” Electronics Letters, Vol. 42, No. 3, pp. 182-184, Feb. 2006.
[18] Y. G. Chen, S. Y. Ma, J. B. Kuo, and R. W. Dutton, “An Analytical Drain Current Model Considering Both Electron and Lattice Temperatures Simultaneously for Deep Submicron Ultrathin SOI NMOS Devices with Self Heating,” IEEE Trans. Electron Devices, Vol. 42, No. 5, pp. 899-906, May 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33949-
dc.description.abstract本篇論文研究金氧半場效電晶體元件的電容行為和閘極穿遂電流模型。第一章簡介high-k材料的重要性。第二章考慮垂直及邊緣電通密度效應,模擬高介電係數閘極氧化層全解離絕緣體上矽互補式金氧半奈米元件之電容行為,根據二維模擬的結果,在1.5nm氧化鉿(HfO2)閘極氧化層元件上看到一條獨特的兩個步階(two-step)電容曲線,我們歸因於垂直及邊緣電通密度效應所造成的。第三章考慮電流分佈效應,推導超薄閘極氧化層(1nm)n型金氧半元件閘極穿遂電流模型,此模型把電流分佈分成三個區間探討,經由實驗數據驗證後,對於長通道或短通道元件的閘極電流皆能做出準確的預測。對長通道元件而言,閘極穿遂電流主要由前飽和區域(pre-saturation region)主導。對短通道元件,操作在飽和區時,閘極電流有可能變為負值,這是因為靠近汲極處通道表面垂直電場反向的緣故。第四章為總結。zh_TW
dc.description.abstractThe thesis analyzes the capacitance behavior and gate tunneling current model of MOS devices. Chapter 1 introduces the importance of high-k materials applied to gate dielectrics. Chapter 2 discusses the gate capacitances behavior of nanometer FD SOI CMOS devices with HfO2 high-k gate dielectric considering vertical and fringing displacement effects using 2D simulation. Based on the 2D simulation results, a unique two-step CS(D)G/CGS versus VG curve could be identified for the device with the 1.5nm HfO2 gate dielectric due to the vertical and fringing displacement effects. Chapter 3 derives the partitoned gate tunneling current model for NMOS devices with an ultra-thin(1nm) gate oxide considering the distributed effects. As verified by the experimentally measured data, this partitioned gate tunneling current model based on the three segment approach provides an accurate prediction of the gate current for the device with a long or short channel. Chapter 4 is the conclusion of this research.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:49:46Z (GMT). No. of bitstreams: 1
ntu-95-R93943051-1.pdf: 1687013 bytes, checksum: 94f4a85431c12d526775acda7ef4a685 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents1 簡介••••••••••••••••••••••••••••••1
2 考慮垂直及邊緣電通密度效應,模擬高介電係數閘極氧化層全解離絕緣體上矽互補式金氧半奈米元件之電容行為
2.1 摘要••••••••••••••••••••••••••••4
2.2 簡介••••••••••••••••••••••••••••5
2.3 電容行為••••••••••••••••••••••••••6
2.4 討論••••••••••••••••••••••••••••10
2.5 結論••••••••••••••••••••••••••••13
2.6 參考資料••••••••••••••••••••••••••13
3 考慮電流分佈效應之超薄閘極氧化層(1nm)n型金氧半元件閘極穿遂電流模型
3.1 摘要••••••••••••••••••••••••••••29
3.2 簡介••••••••••••••••••••••••••••30
3.3 模型推導••••••••••••••••••••••••••30
3.3.1 三極區•••••••••••••••••••••••31
3.3.2 飽和區•••••••••••••••••••••••34
3.4 模型驗證••••••••••••••••••••••••••39
3.5 討論••••••••••••••••••••••••••••41
3.6 總結••••••••••••••••••••••••••••42
3.7 參考資料••••••••••••••••••••••••••43
4 總結••••••••••••••••••••••••••••••56
dc.language.isozh-TW
dc.subject穿遂電流zh_TW
dc.subject電容zh_TW
dc.subjectSOIen
dc.subjecttunnelingen
dc.subjectcapacitanceen
dc.title金氧半場效電晶體之電容行為及閘極穿遂電流模型分析zh_TW
dc.titleModeling of MOSFET Devices : capacitance behavior analysis and gate tunneling current modelen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄,賴飛羆,蘇哿暐
dc.subject.keyword電容,穿遂電流,zh_TW
dc.subject.keywordSOI,capacitance,tunneling,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2006-07-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved