請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張慶源 | |
| dc.contributor.author | Tzu-Ling Hsu | en |
| dc.contributor.author | 許紫菱 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:49:21Z | - |
| dc.date.available | 2009-07-11 | |
| dc.date.copyright | 2006-07-11 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-06 | |
| dc.identifier.citation | 參考文獻
Ayyub, P., M. Multani, M. Barma, V. R. Palkar and R. Vijayaraghavan, “Size-Induced Structural Phase Transitions and Hyperfine Properties of Microcrystalline Fe2O3,” Journal of Physics C. Solid State Physics, 21(11), 2229-2245 (1988). Bergna, H. E., In the Colloid Chemistry of Silica, American Chemical Society, Washington (1994). Blackwell, J. A. and P. W. Carr, “Study of the Fluoride Adsorption Characteristics of Porous Microparticulate Zirconium Oxide,” Journal of Chromatography, 549(1), 43-57 (1991). Buckley, A. M. and M. Greenblatt, “The Sol-Gel Preparation of Silica Gels,” Journal of Chemical Education, 71(7), 599-602 (1994). Chakrabarti, S., S. K. Mandal, B. K. Nath, D. Ganguli and S. Chaudhuri, “Synthesis of γ-Fe2O3 Nanoparticles Coated on Silica Spheres: Structural and Magnetic Properties,” The European Physical Journal B, 34(2), 163-171 (2003). Ertl, G., H. Knozinger, and J. Weitkamp, Preparation of Solid Catalysts, Weinheim, New York (1999). Garmes, H., F. Persin, J. Sandeaux, G. Pourcelly, and M. Mountadar, “Computer Simulation and Optimization of Pevaporation Process,” Desalination, 145(1), 287-291 (2002). Garvie, R. C., “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect, ” The Journal of Physical Chemistry, 69(4), 1238-1243 (1965). Garvie, R. C., “Stabilization of the Tetragonal Structure in Zirconia Microcrystals, ” The Journal of Physical Chemistry, 82(2), 218-223 (1978). Heuer, A. H., “Transformation Toughening in ZrO2-Containing Ceramics,” Journal of the American Ceramic Society, 70(10), 689-698 (1987). Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Marcel Dekker, New-York (1977). Hirano, M., “Inhibition of Low Temperature Degradation of Tetragonal Zirconia Ceramics-A Review,” British Ceramic, Transactions and Journal, 91(5), 139-147 (1992). Huang, Y., T. Ma, J. L. Yang, L. M. Zhang, J. T. He and H. F. Li, “Preparation of Spherical Ultrafine Zirconia Powder in Microemulsion System and its Dispersibility,” Ceramics International, 30(5), 675–681 (2004). Hwang, S. L. and I. W. Chen, “Grain-Size Control of Tetragonal Polycrystals Using the Space Charge Concept,” Journal of the American Ceramic Society, 73(11), 3269-3277 (1990). Jones, R. W., Fundamental Principles of Sol-Gel Technology, Institute of Metals, London (1989) Kim, K. D. and H. T. Kim, “Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method,” Journal of Sol-Gel Science and Technology, 25(3), 183-189 (2002). Klabunde, K. J., Nanoscale Materials in Chemistry, John Wiley and Sons, Inca (2001). Kornak, R., K. Maruszewski, W. Strek, K. Haimann, W. Dudzinski, A. A. Vogt and H. A. Kolodziej, “Electric and Magnetic Properties of Sol-Gel Silica Powders Doped with Ferrofluid,” Journal of Alloys and Compounds, 380(1), 268-273 (2004). Lange, F. F., “Transformation-Toughened ZrO2: Corrections Between Size Control and Composition in the System ZrO2-Y2O3,” Journal of the American Ceramic Society, 69(3), 240-242 (1986). Liu, Q., An innovative approach in magnetic carrier technology, Department of Mining and Metallurgical Engineering McGill University, Montreal Canada (1996). Livage, J., K. Doi and C. Mazieres, “Nature and Thermal Evolution of Amorphous Hydrated Zirconium Oxide,” Journal of the American Ceramic Society, 51(6), 349-353 (1968). Livage, J., M. Henry and C. Sanchez, “Sol-Gel Chemistry of Transition Metal Oxides,” Progress in Solid State Chemistry, 18(4), 259-341 (1988). Martinez, L. M., C. M. Correa, J. A. Odriozol and M. A. Centeno, “Synthesis and Characterization of Sol-Gel Zirconia Supported Pd and Ni Catalysts,” Catalysis Today, 107-108, 800-808 (2005). Matsoukas, T. and E. Gulari, “Dynamics of Growth of Silica Particles from Ammonia-Catalyzed Hydrolysis of Tetra-ethyl-orthosilicate,” Journal of Colloid and Interface Science, 124(1), 252-261 (1988). Morgan, P. E. D., “Synthesis of 6-nm Ultrafine Monoclinic Zirconia,” Journal of the American Ceramic Society, 67(10), C204 (1984). Murase, Y. and E. Kato, “Role of Water Vapor in Crystallite Growth and Tetragonal-Monoclinic Phase Transformation of ZrO2,” Journal of the American Ceramic Society, 66(3), 196 -200 (1983). Okumura, M., K. Fujinaga and Y. Seike, “Adsorption of Phosphate with Activated Carbon Loaded with Zirconium and its Application to a Simple in Situ Preconcentration Method for Phosphate in Environmental Water Samples,” Bunseki Kagaku, 48(2), 215-224 (1999). Peraniemi, S. and M. Ahlgren, “Optimized Arsenic, Selenium and Mercury Determinations in Aqueous Solutions by Energy Dispersive X-ray Fluorescence After Preconcentration onto Zirconium-Loaded Activated Charcoal,” Analytica Chimica Acta, 302(1), 89-95 (1995). Pierre, A. C., Introduction to Sol-Gel Processing, Kluwer Academic Publishers, Boston (1998). Ponce-Castaneda S., J. R. Martinez, F. Ruiz, S. Palomares-Sanchez and J. A. Matutes-Aquino, “Magnetic Properties Enhancement of M-Ba Ferrites Embedded in a SiO2 Matrix,” Journal of Magnetism and Magnetic Materials, 250, 160-163 (2002). Salgaonkar Lalit P. and Radha V. Jayaram, “Polyaniline Film Formation in Hexadecyl Trimethyl Ammonium Bromide Admicelles on Hydrous Zirconia Surface,” Journal of Colloid and Interface Science, 291(1), 92–97 (2005). Sato, T. and M. Shimada, “Crystalline Phase Change in Yttria-Partially- Stabilized Zirconia by Low-Temperature Annealing,” Journal of the American Ceramic Society, 67(10), C212-C213 (1984). Sato, T. and M. Shimada, “Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water,” Journal of the American Ceramic Society, 68(6), 356-359 (1985). Satoh, T., M. Akitaya, M. Konno and S. Saito, “Particle Size Distributions Produced by Hydrolysis and Condensation of Tetraethylrthosilicate,” Journal of Chemical Engineering of Japan, 30(4), 759-762 (1997). Suzuki, T. M., J. O. Bomani, H. Matsunaga and T. Yokoyama, “Preparation of Porous Resin Loaded with Crystalline Hydrous Zirconium Oxide and its Application to the Removal of Arsenic,” Reactive & Functional Polymers, 43(1), 165-172 (2000). Suzuki, T. M., M. L. Tanco, D. A. P. Tanaka, H. Matsunaga and T.Yokoyama, “Adsorption Characteristics and Removal of Oxo-Anions of Arsenic and Selenium on the Porous Polymers Loaded with Monoclinic Hydrous Zirconium Oxide,” Separation Science and Technology, 36(1), 103-111 (2001). Tanaka, D. A. P., S. Kerketta, M. A. L. Tanco, T. Yokoyama and T. M. Suzuki, “Adsorption of Fluoride Ion on the Zirconium(Ⅳ) Complexes of the Chelating Resins Functionalized with Amine-N-Acetate Ligands,” Separation Science and Technology, 37(4), 877-894 (2002). Tani, E., M. Yoshimura and S. Somiya, “Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrothermal Conditions,” Journal of the American Ceramic Society, 66(1), 11-13 (1983). Teruoki, T., H. Takatoshi, M. Kanta, K. Masahiro, T. Shizuka and W. Katsuhiko, “Novel Synthesis of Silica-Coated Ferrite Nanoparticles Prepared Using Water-in-Oil Microemulsion,” Journal of the American Ceramic Society, 85(9), 2188-2194 (2002). Vansant, E. F., P. Vandervoort and K. C. Vrancken, Characterization and Chemical Modification of the Silica Surfaces, Elsevier, Amsterdam Netherlands (1995). Wang, J. A., M. A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz and X. Bokhimi, “Comparative Study of Nanocrystalline Zirconia Prepared by Precipitation and Sol-Gel Methods,” Catalysis Today, 68(1), 21-30 (2001). Watanabe, K., M. Sakairi, H. Takahashi, S. Hirai and S. Yamagushi., “Formation of Al-Zr Composite Oxide Films on Aluminum by Sol-Gel Coating and Anodizing,” Journal of Electroanalytical Chemistry, 473(1), 250-255 (1999). Wright, J. D. and N .A. J. M. Sommerdijk, Sol-Gel Materials Chemistry and Applications, Taylor & Francis, London (2001). Yoshimura, M. and T. Noma, “Role of H2O on the Degradation Process of Y-TZP,” Journal of Materials Science Letters, 6(4), 465-467 (1987). Zhuravlev, L. T., “Surface Characterization of Amorphous Silica-a Review of Work From the Former USSR,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 74(1), 71-90 (1993). 王光明,「土壤環境礦物學」,藝軒圖書出版社,台灣台北 (2000)。 王貞雅,「矽凝膠應用在酵素固定及非試劑消耗型之電化學冷光偵測系統研究」,國立中山大學化學系博士論文 (2004 a)。 王惠君,「以回應曲面法探討溶膠凝-膠法製備奈米二氧化矽之參數影響」,私立中原大學化學工程學研究所碩士論文 (2004 b)。 王曉娟,「以商業用及超順磁活性氧化鋁吸附處理含氟水溶液」,國立台灣大學環境工程學研究所碩士論文 (2005)。 杜正恭,「氧化鋯,陶瓷技術手冊」,汪健民主編,中華民國粉末冶金協會,台灣台北 (1994)。 林彥宏,「Fe3O4-SiO2奈米核-殼結構粒子的製備與磁性研究」,東海大學物理學系碩士論文 (2003)。 林珮萱,「以商業用及新穎奈米磁性氧化鋁吸附處理含氟水溶液」,國立台灣大學環境工程學研究所碩士論文 (2004)。 宛德福,馬興隆,「磁性物理學」,電子科技大學出版社,台灣台北 (1994)。 近角聰信,「磁性物理學」,張煦,李學養合譯,聯經出版社,台灣台北 (1982)。 程麗純,「溶凝膠法製備Nano-pore氧化鋯薄膜 」,國立台灣大學化學工程學研究所碩士論文 (1999)。 陳澄佑,「磁性流體的研製」,國立清華大學材料科學研究所碩士論 (1993)。 溫明鏡,「氧化鐵磁性奈米粒子之合成與特性研究」,國立中正大學物理研究所碩士論文 (2003)。 黃忠良,「磁性流體理論應用」,復漢出版社,台灣台北 (1989)。 蔡煥修,「磁性流體製程與性質之基礎研究」,國立成功大學礦冶及材料科學研究所碩士論文 (1992)。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33932 | - |
| dc.description.abstract | 本研究以新穎超順磁性二氧化鋯吸附劑吸附處理含F-、SO42-、Cl-、Br-和NO3-水溶液。研究內容包含吸附劑之製備(分別以沈澱法(MZHP)及溶膠-凝膠法(MZSG)合成超順磁性二氧化鋯)、物理化學特性鑑定分析、等溫吸附行為、吸附動力及二氧化鋯吸附再生試驗。此外,亦針對操作因子如pH值、離子強度及陰離子初始濃度對鋯離子溶出之影響進行探討。
超順磁性二氧化鋯之製備程序乃先以共沉澱法製備奈米級Fe3O4超順磁性顆粒;再以溶膠凝-膠法於Fe3O4表面包覆SiO2,製得SiO2/Fe3O4磁性載體;最後再分別以沈澱法(MZHP)及溶膠-凝膠法(MZSG)於磁性載體表面上合成奈米級磁性二氧化鋯吸附劑。然而無法以沈澱法製得均勻之MZHP,因此以下之探討皆以MZSG為主要對象。Fe3O4、磁性載體及MZSG之飽和磁化強度分別為56.45、21.72及7.10 emu g-1,皆具有超順磁性。Fe3O4磁性顆粒粒徑約為7-9 nm,SiO2/Fe3O4磁性載體及MZSG粒徑約為10-12 nm。X射線繞射(X-ray diffraction, XRD) 之鑑定結果顯示MZSG表面之氧化鋯為四方晶體(tetragonal)及單斜晶體(monoclinic)結構。 等溫吸附試驗之結果顯示以Langmuir與Freundlich等溫吸附方程式皆能有效的描述MZSG吸附劑吸附氟離子及硫酸根之行為。以單層飽和吸附量(qL)及異質性(nF)而言,MZSG對氟離子吸附效果最佳。MZSG吸附反應速率非常快,且對pH值非常敏感,故以簡單設備(完全攪拌反應槽及氟選擇性電極)無法探討其對陰離子吸附的動力。 半導體實廠模擬廢水(實驗條件為配製 F-、SO42-、Cl-、Br-和NO3-初始濃度值分別為 54、2、2.2、1.1及10 mg L-1且初始pH值為4之水溶液)之混合陰離子吸附去除試驗。結果顯示:MZSG吸附可有效去除半導體廢水中之氟離子,對於其他陰離子(SO42-、Cl-、Br-和NO3-)而言,其吸附去除效果較差。 MZSG對氟離子之吸附再生試驗,以吸附、物理脫附、再生及中和程序為一循環。當處理水溶液pH值為4,重複4循環之後,則吸附容量為原來之83 %;而當處理水溶液pH值為5,重複8循環之後,則吸容量為原來之84 %。 | zh_TW |
| dc.description.abstract | Two novel magnetic zirconia adsorbents were synthesized employing precipitation (called MZHP) and sol-gel (called MZSG) methods, respectively, in this study. However, only MZSG possessed homogeneous property so that MZSG was the main adsorbent discussed in this study. MZSG was prepared with three sequentical steps: formation of Fe3O4 (magnetitie) as magnetic core via precipitation method; coating of SiO2 (silica) film on magnetite as magnetic carrier with sol-gel method; coating of ZrO2 as magnetic adsorbent via sol-gel method.
The physicochemical characteristics of adsorbents, adsorption behavior of various anions, such as F-, SO42-, Cl-, Br- and NO3-, and regeneration processes of aged adsorbents from fluoride adsorption were investigated. In addition, effects of operating parameters, such as ionic strength, pH value and initial concentration were also were also examined. Langmuir and Freundlich isotherms can well describe the adsorption of F- and SO42- on MZSG from solutions, and MZSG possessed high potentical to remove F- and SO42-. However, the adsoption capacities of Cl-, Br- and NO3- were considerably low. There sults indicated MZSG was a good adsorbent for selective adsorption of F- and SO42-. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:49:21Z (GMT). No. of bitstreams: 1 ntu-95-R93541108-1.pdf: 1231136 bytes, checksum: 2ea3505c21c35852262346a863a5fcc9 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
頁 次 中文摘要 ………………………………………………………… i 英文摘要 ………………………………………………………… iii 目錄 ………………………………………………………… iv 表目錄 ………………………………………………………… vii 圖目錄 ………………………………………………………… viii 符號說明 ………………………………………………………… xiii 第一章 緒論…………………………………………………… 1 1.1 研究背景……………………………………………… 1 1.2 研究目的……………………………………………… 2 第二章 理論說明與文獻回顧………………………………… 4 2.1 奈米磁性顆粒………………………………………… 4 2.1.1 磁性的種類…………………………………………… 4 2.1.2 超順磁(Superparamagnetism)………………………… 10 2.1.3 鐵氧化物……………………………………………… 12 2.1.4 磁性分離技術………………………………………… 14 2.2 溶膠-凝膠法(Sol-gel method)………………………… 15 2.2.1 溶膠-凝膠法原理……………………………………… 15 2.2.2 溶膠-凝膠法之應用…………………………………… 22 2.3 氧化鋯(Zirconia)……………………………………… 25 2.3.1 氧化鋯之特性………………………………………… 25 2.3.2 氧化鋯之劣化………………………………………… 26 2.3.3 氧化鋯之應用………………………………………… 27 第三章 實驗設備與研究方法………………………………… 28 3.1 藥品…………………………………………………… 28 3.2 設備…………………………………………………… 30 3.3 實驗步驟……………………………………………… 31 3.3.1 吸附劑的製備………………………………………… 31 3.3.1.1 化學共沈澱法備製Fe3O4磁性載體………………… 31 3.3.1.2 溶膠-凝膠法包覆SiO2之Fe3O4磁性載體………… 33 3.3.1.3 奈米超順磁性二氧化鋯顆粒………………………… 34 3.3.2 吸附劑之物理化學特性分析………………………… 35 3.3.3 等溫吸附實驗………………………………………… 37 3.3.4 動力試驗(使用CSTR)………………………………… 39 3.3.5 二氧化鋯之鋯離子溶出試驗………………………… 39 3.3.6 再生試驗……………………………………………… 39 第四章 結果與討論…………………………………………… 40 4.1 奈米超順磁性二氧化鋯吸附劑之製備……………… 40 4.1.1 SiO2/ Fe3O4磁性載體………………………………… 40 4.1.2 奈米超順磁性二氧化鋯顆粒………………………… 44 4.2 吸附劑之基本性質…………………………………… 46 4.2.1 粒徑分析……………………………………………… 46 4.2.2 比表面積……………………………………………… 46 4.2.3 元素分析……………………………………………… 49 4.2.4 磁滯曲線……………………………………………… 49 4.2.5 等電位點……………………………………………… 53 4.2.6 結晶構造……………………………………………… 55 4.2.7 熱重分析……………………………………………… 57 4.3 奈米超順磁性二氧化鋯對陰離子之吸附行為……… 63 4.3.1 轉速對吸附行為之影響……………………………… 63 4.3.2 pH對吸附行為之影響………………………………… 63 4.3.3 離子強度對吸附行為之影響………………………… 63 4.3.4 吸附劑之等溫吸附…………………………………… 67 4.3.5 完全攪拌反應槽之吸附動力………………………… 80 4.3.6 合成實廠廢水進行模擬……………………………… 85 4.4 二氧化鋯之鋯離子溶出探討………………………… 87 4.5 再生試驗……………………………………………… 91 第五章 結論與建議…………………………………………… 99 5.1 結論…………………………………………………… 99 5.2 建議…………………………………………………… 102 參考文獻 ………………………………………………………… 103 附錄 附錄A 微波消化方法與步驟………………………………… A-1 附錄B XRD標準圖譜……………………………………… B-1 | |
| dc.language.iso | zh-TW | |
| dc.subject | 陰離子 | zh_TW |
| dc.subject | 磁性二氧化鋯 | zh_TW |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 溶膠-凝膠法 | zh_TW |
| dc.subject | defluoridation | en |
| dc.subject | magnetic zirconia | en |
| dc.subject | anion | en |
| dc.subject | sol-gel method | en |
| dc.subject | adsorption | en |
| dc.subject | adsorption isotherm | en |
| dc.title | 以奈米超順磁性二氧化鋯吸附處理陰離子溶液 | zh_TW |
| dc.title | Adsorption of Fluoride, Chloride, Bromide, Sulfate and Nitrate onto Novel Superparamagnetic Zirconia from Aqueous Solutions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張奉文,張瓊芬 | |
| dc.subject.keyword | 磁性二氧化鋯,吸附,溶膠-凝膠法,陰離子, | zh_TW |
| dc.subject.keyword | magnetic zirconia,adsorption,defluoridation,adsorption isotherm,sol-gel method,anion, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
