Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33916
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余家利(Chia-Li Yu),楊泮池(Pan-Chyr Yang)
dc.contributor.authorYuh-Pyng Sheren
dc.contributor.author佘玉萍zh_TW
dc.date.accessioned2021-06-13T05:48:57Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-10
dc.identifier.citation(1) Doll SR. Smoking and lung cancer. Am J Respir Crit Care Med 2000;162:4-6.
(2) Van Zandwijk N, Mooi WJ, Rodenhuis S. Prognostic factors in NSCLC. Recent experiences. Lung Cancer 1995;12:S27-33.
(3) Schiller JH. Current standards of care in small-cell and non-small-cell lung cancer. Oncology 2001;61 Suppl 1:3-13.
(4) Travis WD. Pathology of lung cancer. Clin Chest Med 2002;23:65-81.
(5) Zochbauer-Muller S, Gazdar AF, Minna JD. Molecular pathogenesis of lung cancer. Annu Rev Physiol 2002;64:681-708.
(6) Travis WD, Travis LB, Devesa SS. Lung cancer. Cancer 1995;75:191-202.
(7) Worden FP, Kalemkerian GP. Therapeutic advances in small cell lung cancer. Expert Opin Investig Drugs 2000;9:565-79.
(8) Marahatta SB, Sharma N, Koju R, Makaju RK, Petmitr P, Petmitr S. Cancer: determinants and progression. Nepal Med Coll J 2005;7:65-71.
(9) Fidler IJ. Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst 1970;45:773-82.
(10) Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983-8.
(11) Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003;33:49-54.
(12) Kopfstein L, Christofori G. Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci 2006;63:449-68.
(13) Kaufmann AM, Lichtner RB, Schirrmacher V, et al. Induction of apoptosis by EGF receptor in rat mammary adenocarcinoma cells coincides with enhanced spontaneous tumor metastasis. Oncogene 1996;13:2349-58.
(14) Lu Z, Jiang G, Blume-Jensen P, et al. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 2001;21:4016-31.
(15) Marcoux N, Vuori K. EGF receptor mediates adhesion-dependent activation of the Rac GTPase: a role for phosphatidylinositol 3-kinase and Vav2. Oncogene 2003;22:6100-6.
(16) Fontanini G, Vignati S, Bigini D, et al. Epidermal growth factor receptor (EGFr) expression in non-small cell lung carcinomas correlates with metastatic involvement of hilar and mediastinal lymph nodes in the squamous subtype. Eur J Cancer 1995;31:178-83.
(17) Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Bet Mikulis W. Molecular aspects of epithelial plasticity: implications for local tumour invasion and metastasis. Mutat Res 2004;566:9-20.
(18) Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998;153:333-9.
(19) Cavallaro U, Christofori G. Cell adhesion and signaling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004;4:118-32.
(20) Ebralidze A, Tulchinsky E, Grigorian M, et al. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2+-binding protein family. Genes Dev 1989;3:1086-93.
(21) Dear TN, Ramshaw IA, Kefford RF. Differential expression of a novel gene, WDNM1, in nonmetastatic rat mammary adenocarcinoma cells. Cancer Res 1988;48:5203-9.
(22) Dear TN, McDonald DA, Kefford RF. Transcriptional down-regulation of a rat gene, WDNM2, in metastatic DMBA-8 cells. Cancer Res 1989;49:5323-8.
(23) Basset P, Bellocq JP, Wolf C, et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 1990;348:699-704.
(24) Fujita M, Spray DC, Choi H, et al. Extracellular matrix regulation of cell-cell communication and tissue-specific gene expression in primary liver cultures. Prog Clin Biol Res 1986;226:333-60.
(25) Steeg PS, Bevilacqua G, Kopper L, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988;80:200-4.
(26) Yang X, Welch DR, Phillips KK, Weissman BE, Wei LL. KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Lett 1997;119:149-55.
(27) Jackson P, Marreiros A, Russell PJ. KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 2005;37:530-4.
(28) West A, Vojta PJ, Welch DR, Weissman BE. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1). Genomics 1998;54:145-8.
(29) Seraj MJ, Samant RS, Verderame MF, Welch DR. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 2000;60:2764-9.
(30) Yoshida BA, Dubauskas Z, Chekmareva MA, Christiano TR, Stadler WM, Rinker-Schaeffer CW. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 1999;59:5483-7.
(31) Gao AC, Lou W, Dong JT, Isaacs JT. CD44 is a metastasis suppressor gene for prostatic cancer located on chromosome 11p13. Cancer Res 1997;57:846-9.
(32) Seftor RE, Seftor EA, Sheng S, Pemberton PA, Sager R, Hendrix MJ. Maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Res 1998;58:5681-5.
(33) Warner EE, Mulshine JL. System engineering lung cancer screening with spiral CT: how could it work? Oncology 2004;18:564-75.
(34) Schrevens L, Lorent N, Dooms C, Vansteenkiste J. The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer. Oncologist 2004;9:633-43.
(35) Braun S, Pantel K, Muller P, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 2000;342:525-33.
(36) Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency. Dormancy of solitary cells after successful extravasation and limited survival of early micrometastasis. Am J Pathol 1998;153:865-73.
(37) Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. Jama 2005;294:1359-66.
(38) Chambers AF. The metastatic process: basic research and clinical implications. Oncol Res 1999;11:161-8.
(39) Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Science 2005;109:365-79.
(40) Carney DN. Lung cancer-time to move on from chemotherapy. N Engl J Med 2002;346:126-8.
(41) Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997;80:1529-37.
(42) Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467-70.
(43) Van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
(44) International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931-45.
(45) Mironov AA, Fickett JW, Gelfand MS. Frequent alternative splicing of human genes. Genome Res 1999;9:1288-93.
(46) Brett D, Hanke J, Lehmann G, et al. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Letters 2000;474:83-6.
(47) Kan Z, Rouchka EC, Gish WR, States DJ. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 2001;11:889-900.
(48) Modrek B, Resch A, Grasso C, Lee C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 2001;29:2850-9.
(49) Chen JJ, Peck K, Hong TM, et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 2001;61:5223-30.
(50) Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. PNAS 2001;98:13790-5.
(51) Huang YH, Chen YT, Lai JJ, Yang ST, Yang UC. PALS db: Putative Alternative Splicing database. Nucleic Acids Res 2002;30:186-90.
(52) Yousef GM, Diamandis EP. Human tissue kallikreins: a new enzymatic cascade pathway? Biol Chem 2002;383:1045-57.
(53) Borgono CA, Michael IP, Diamandis EP. Human tissue kallikreins: physiologic roles and applications in cancer. Mol Cancer Res 2004;2:257-80.
(54) Wolf WC, Evans DM, Chao L, Chao J. A Synthetic Tissue Kallikrein Inhibitor Suppresses Cancer Cell Invasiveness. Am J Pathol 2001;159:1797-805.
(55) Killian CS, Corral DA, Kawinski E, Constantine RI. Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 1993;192:940-7.
(56) Ghosh MC, Grass L, Soosaipillai A, Sotiropoulou G, Diamandis EP. Human kallikrein 6 degrades extracellular matrix proteins and may enhance the metastatic potential of tumour cells. Tumour Biol 2004;25:193-9.
(57) Kapadia C, Ghosh MC, Grass L, Diamandis EP. Human kallikrein 13 involvement in extracellular matrix degradation. Biochem Biophys Res Commun 2004;323:1084-90.
(58) Liu XL, Wazer DE, Watanabe K, Band V. Identification of a novel serine protease-like gene, the expression of which is down-regulated during breast cancer progression. Cancer Res 1996;56:3371-9.
(59) Goyal J, Smith KM, Cowan JM, Wazer DE, Lee SW, Band V. The role for NES1 serine protease as a novel tumor suppressor. Cancer Res 1998;58:4782-6.
(60) Yoshida S, Shiosaka S. Plasticity-related serine proteases in the brain (review). Int J Mol Med 1999;3:405-9.
(61) Cane' S, Bignotti E, Bellone S, et al. The novel serine protease tumor-associated differentially expressed gene-14 (KLK8/Neuropsin/Ovasin) is highly overexpressed in cervical cancer. American Journal of Obstetrics and Gynecology 2004;190:60-6.
(62) Magklara A, Scorilas A, Katsaros D, et al. The Human KLK8 (Neuropsin/Ovasin) Gene: Identification of Two Novel Splice Variants and Its Prognostic Value in Ovarian Cancer. Clin Cancer Res 2001;7:806-11.
(63) Chou RH, Lin KC, Lin SC, Cheng JY, Wu CW, Chang WS. Cost-effective trapezoidal modified Boyden chamber with comparable accuracy to a commercial apparatus. Biotechniques 2004;37:724-26.
(64) Chu YW, Yang PC, Yang SC, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997;17:353-60.
(65) LoCH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol 2003;171:600.
(66) Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem 1995;270:26270-7.
(67) Chou CC, Chen CH, Lee TT, Peck K. Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res 2004;32:e99.
(68) Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004;5:R80.
(69) Kendall MG., Gibbons DJ. Rank Correlation Methods . 5th ed. New York: Oxford University Press; 1990.
(70) Hann HW, Stahlhut MW, Rubin R, Maddrey WC. Antitumor effect of deferoxamine on human hepatocellular carcinoma growing in athymic nude mice. Cancer 1992;70:2051-6.
(71) Zijlstra A, Mellor R, Panzarella G, et al. A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 2002;62:7083-92.
(72) Yoshida S, Taniguchi M, Hirata A, Shiosaka S. Sequence analysis and expression of human neuropsin cDNA and gene. Gene 1998;213:9-16.
(73) Mitsui S, Tsuruoka N, Yamashiro K, Nakazato H, Yamaguchi N. A novel form of human neuropsin, a brain-related serine protease, is generated by alternative splicing and is expressed preferentially in human adult brain. Eur J Biochem 1999;260:627-34.
(74) Shimizu C, Yoshida S, Shibata M, et al. Characterization of recombinant and brain neuropsin, a plasticity-related serine protease. J Biol Chem 1998;273:11189-96.
(75) Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. PNAS 1998;95:14863-8.
(76) Wierzbicka-Patynowski I, Schwarzbauer JE. The ins and outs of fibronectin matrix assembly. J Cell Sci 2003;116:3269-76.
(77) Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back. Science 2003;302:1704-9.
(78) Cooper JA. The role of actin polymerization in cell motility. Annu Rev Physiol 1991;53:585-605.
(79) Estes JE, Selden LA, Gershman LC. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry 1981;20:708-12.
(80) Port RE, Knopp MV, Hoffmann U, Milker-Zabel S, Brix G. Multicompartment analysis of gadolinium Chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging 1999;10:233-41.
(81) Furman-Haran E, Margalit R, Grobgeld D, Degani H. Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proc Natl Acad Sci USA 1996;93:6247-51.
(82) Peck K, Sher YP, Shih JY, Roffler SR, Wu CW, Yang PC. Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients. Cancer Res 1998;58:2761-5.
(83) Sher YP, Shih JY, Yang PC, et al. Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clin Cancer Res 2005;11:173-9.
(84) Chen LM, Hodge GB, Guarda LA, Welch JL, Greenberg NM, Chai KX. Down-regulation of prostasin serine protease: a potential invasion suppressor in prostate cancer. Prostate 2001;48:93-103.
(85) Del Rosso M, Fibbi G, Pucci M, et al. Multiple pathways of cell invasion are regulated by multiple families of serine proteases. Clin Exp Metastasis 2002;19:193-207.
(86) Srikantan V, Valladares M, Rhim JS, Moul JW, Srivastava S. HEPSIN inhibits cell growth/invasion in prostate cancer cells. Cancer Res 2002;62:6812-6.
(87) Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996;84:371-9.
(88) Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005;69 Suppl 3:4-10.
(89) Clamp AR, Jayson GC. The clinical potential of antiangiogenic fragments of extracellular matrix proteins. Br J Cancer 2005;93:967-72.
(90) Homandberg GA, Williams JE, Grant D, Schumacher B, Eisenstein R. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol 1985;120:327-32.
(91) Yousef GM, Yacoub GM, Polymeris ME, Popalis C, Soosaipillai A, Diamandis EP. Kallikrein gene downregulation in breast cancer. Br J Cancer 2004;90:167-72.
(92) Shigemasa K, Tian X, Gu L, et al. Human kallikrein 8 (hK8/TADG-14) expression is associated with an early clinical stage and favorable prognosis in ovarian cancer. Oncol Rep 2004;11:1153-9.
(93) Kishi T, Grass L, Soosaipillai A, et al. Human kallikrein 8, a novel biomarker for ovarian carcinoma. Cancer Res 2003;63:2771-4.
(94) Dominioni L, Strauss GM, Imperatori A, et al. Screening for lung cancer. Chest Surg Clin N Am 2000;10:729-36.
(95) Soichiro A, Hideki K, Neomichi I, et al. Optimal combination of seven tumor markers in prediction of advanced stage at first examination of patients with non-small cell lung cancer. Anticancer Res 2001;21:3085-92.
(96) Tarro G, Perna A, Esposito C. Early diagnosis of lung cancer by detection of tumor liberated protein. J Cell Physiol 2005;203:1-5.
(97) Bunn PA. Early detection of lung cancer using serum RNA or DNA markers: ready for 'prime time' or for validation? J Clin Oncol 2003;21:3891-3.
(98) Sozzi G., Conte D, Leon M, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 2003;21:3902-8.
(99) Forus A, Hoifodt HK, Overli G.E, et al. Sensitive fluorescent in situ hybridisation method for the characterisation of breast cancer cells in bone marrow aspirates. Mol Pathol 1999;52:68-72.
(100) Muller P, Weckermann D, Riethmuller G., et al. Detection of genetic alterations in micrometastatic cells in bone marrow of cancer patients by fluorescence in situ hybridization. Cancer Genet Cytogenet 1996;88:8-16.
(101) Denis MG., Lipart C, Leborgne J, et al. Detection of disseminated tumor cells in peripheral blood of colorectal cancer patients. Int J Cancer 1997;74:540-4.
(102) Hardingham JE, Hewett PJ, Sage RE, et al. Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease. Int J Cancer 2000;89:8-13.
(103) Gross H, Verwer B, Houck D, et al: Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10-7. Proc Natl Acad Sci U S A 1995;92:537-41.
(104) Mitas M, Cole DJ, Hoover L, et al. Real-time reverse transcription-PCR detects KS1/4 mRNA in mediastinal lymph nodes from patients with non-small cell lung cancer. Clin Chem 2003;49:312-5.
(105) Keilholz U, Goldin-Lang P, Bechrakis NE, et al. Quantitative detection of circulating tumor cells in cutaneous and ocular melanoma and quality assessment by real-time reverse transcriptase-polymerase chain reaction. Clin Cancer Res 2004;10(5):1605-12.
(106) Hoon DS, Wang Y, Dale PS, et al. Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. J Clin Oncol 1995;13:2109-16.
(107) Taback B, Chan AD, Kuo CT, et al. Detection of Occult Metastatic Breast Cancer Cells in Blood by a Multimolecular Marker Assay Correlation with Clinical Stage of Disease. Cancer Res 2001;61:8845-50.
(108) Strausberg RL. The Cancer Genome Anatomy Project: new resources for reading the molecular signatures of cancer. J Pathol 2001;195:31-40.
(109) Weynants P, Humblet Y, Canon JL, Symann M. Biology of small cell lung cancer: an overview. Eur Resp J 1990;3:699-714.
(110) Bostick PJ, Chatterjee S, Chi DD, et al. Limitations of specific reverse-transcriptase polymerase chain reaction markers in the detection of metastases in the lymph nodes and blood of breast cancer patients. J. Clin. Oncol 1998;16:2632-40.
(111) Sarantou T, Chi DD, Garrison DA, et al. Melanoma-associated antigens as messenger RNA detection markers for melanoma. Cancer Res 1997;57:1371-6.
(112) Iwao K, Watanabe T, Fujiwara Y, et al. Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small cell lung cancer. Int J Cancer 2001;91:433-7.
(113) Spataro V, Norbury C, Harris AL. The ubiquitin-proteasome pathway in cancer. Br J Cancer 1998;77:448-55.
(114) Yamazaki T, Hibi K, Takase T, et al. PGP9.5 as a marker for invasive colorectal cancer. Clin Cancer Res 2002;8:192-5.
(115) Tezel E, Hibi K, Nagasaka T, et al. PGP9.5 as a prognostic factor in pancreatic cancer. Clin Cancer Res 2000;6:4764-7
(116) Sasaki H, Yukiue H, Moriyama S, et al. Expression of the protein gene product 9.5, PGP9.5, is correlated with t-status in non-small cell lung cancer. Jpn J Clin Oncol 2001;31:532-5.
(117) Yamada KM, Weston JA. Isolation of a major cell surface glycoprotein from fibroblasts. Proc Natl Acad Sci USA 1974;71:3492-6.
(118) Jaffe EA, Mosher DF. Synthesis of fibronectin by cultured human endothelial cells. J Exp Med 1979;147:1779-91.
(119) Chen LB, Maitland N, Gallimore PH, McDougall JK. Detection of the large external transformation-sensitive protein on some epithelial cells. Exp Cell Res 1977;106:39-46.
(120) Villiger B, Kelly DG, Kuhn C, McDonald JA. Human alveolar macrophage fibronectin: synthesis and ultrastructural localisation. Clin Res 1980;28:745A.
(121) Olden K, Yamada KM. Mechanism of the decrease in the major cell surface protein of chicken embryo fibroblasts after transformation. Cell 1997;11:957-69.
(122) Smith HS, Riggs JL, Mosesson NW. Production of fibronectin by human epithelial cells in culture. Cancer Res 1979;39:4138-44.
(123) D'ardenne AJ, McGee JO'D. Fibronectin in disease. J Pathol 1984;12:235-351.
(124) Akiyama SK, Olden K, Yamada KM. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev 1995;14:173-89.
(125) Ryu S, Jimi S, Eura Y, Kato T, Takebayashi S. Strong intracellular and negative peripheral expression of fibronectin in tumor cells contribute to invasion and metastasis in papillary thyroid carcinoma. Cancer Lett 1999;146:103-9.
(126) Takayasu H, Horie H, Hiyama E, et al. Frequent deletions and mutations of the β-catenin are associated wiht overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clin Cancer Res 2001;7:901-8.
(127)Tapper J, Kettunen E, E1-Fifai W, Seppala M, Andresson LC, Knuutila S. Changes in gene expression during progression of ovarian catcinoma. Cancer Genet Cytogenet 2001;128:1-6.
(128)Fidler IJ, The pathogensis of cancer metastasis:the 'seed and soil' hypothesis revistited. Nature Rev Cancer 2003;3:453-8.
(129)Braun S, Pantel K, Muller P, et al. Cytokeratin-positive bone marrow micrometastases and survival of breast cancer patients with stage I-III disease. N Engl J Med 2000;342:525-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33916-
dc.description.abstract肺癌細胞轉移的分子基礎研究有助於治療方式的改善及發現新治療標的分子。正確的預後評估及治療方式的選擇則決定癌症病人的存活率。因此,本論文的研究目標在於探討肺癌轉移相關基因及研發臨床預後的方法。
首先利用資料庫分析,並以一對具有不同轉移力的肺癌細胞株來探討癌轉移相關基因。經過篩選後,發現一個有趣的基因-人類第八號激肽釋放酶,它是屬於人類組織激肽釋放酶基因家族中的一員。人類第八號激肽釋放酶為絲胺酸蛋白酶,已知為卵巢癌病人預後良好的評估指標。然而,其生物意義卻不清楚。實驗結果顯示藉由轉殖於具有高侵襲力肺癌細胞株中人類第八號激肽釋放酶基因的過量表現,可抑制肺癌細胞的侵襲力。相反地,若利用具專一性的短髮夾核糖核酸來抑制細胞內生性人類第八號激肽釋放酶,則可增加肺癌細胞的侵襲力。根據原位分解技術及細胞附著力偵測的結果顯示,人類第八號激肽釋放酶的剪接產物可分解血清纖維結合蛋白,進而改變細胞外圍環境。去氧核糖核酸微陣列實驗及細胞內肌動蛋白纖維染色結果,顯示了人類第八號激肽釋放酶的剪接產物分解血清纖維結合蛋白後,抑制了整合素的訊息傳遞途徑,並藉由抑制F肌動蛋白的重排而妨礙肺癌細胞的移動能力。此外,以人類Alu序列為標的來偵測並定量小鼠動物實驗中鼠血液內人類肺癌細胞存在多寡的實驗顯示,在活體試驗中人類第八號激肽釋放酶可抑制腫瘤生長及轉移。近一步由臨床研究肺癌病人檢體發現,若肺癌早期病人(第一、二期)的癌組織中測得較高的人類第八號激肽釋放酶基因的表現,則病人有明顯較長的緩和期及較低的復發率。此發現可歸納出人類第八號激肽釋放酶的功能為阻礙腫瘤的轉移,並可利用此基因來當作非小細胞肺癌病人預後的指標。
臨床上最有效於提高療效的方法為早期診斷出癌轉移並施予有效的療程。因此,另一個計畫著重於早期檢測血液中癌細胞的研究。目前肺癌分期及病況評估主要是根據腫瘤影像法。然而此法受限於不夠靈敏,而無法正確地診斷出早期癌轉移的發生。此研究利用數個指標基因來偵測血液循環中的癌細胞,以增加目前肺癌分期及病況評估的正確度,並可用於快速評估藥效。我們利用基因庫來搜尋合適的基因用以偵測血液循環中的癌細胞,經實驗證明其中四個基因可當作標的基因。利用這四個標的基因來偵測五十四個非小細胞肺癌病人血液中癌細胞的存在與否,可達到百分之七十二檢出率。若利用即時定量聚合脢放大偵測法轉換成癌細胞載荷量來評估肺癌病人血液中癌細胞量與臨床結果的關聯性,則病人癌細胞載荷量越高者其治療效果較差且存活時間較短。治療效果不好的病人,其治療後仍可測到血液中癌細胞的存在,並有較短的存活期。藉由此四個標的基因及癌細胞載荷量來反映出肺癌病人血液中癌細胞量,可增強傳統肺癌分期法,進而提高檢測率及快速評估治療效果。此外也可輔佐醫師在治療肺癌病人上給予更適當的治療方式。
zh_TW
dc.description.abstractResearch investigations on the molecular basis of lung carcinoma metastasis are helpful to identify therapeutic targets for metastasis. An accurate prognosis and selection of therapeutic modality determines the survival of cancer patients. Therefore, this thesis aims to characterize metastasis associated genes and develop clinical prognosis assay for lung cancer.
Firstly an in silico analysis approach was used to examine metastasis associated genes by a cell line model of human lung adenocarcinoma with different invasive abilities. After screening, one interesting gene was found, human kallikrein 8 (KLK8), a member of human tissue kallikrein gene family. The serine protease KLK8 protein (hK8) is known to be a favorable prognostic marker in ovarian cancer, but the biological basis of this is not understood. The experimental results showed that overexpressing the KLK8 gene in highly invasive lung cancer cell lines suppressed their invasiveness. This role in invasiveness was further confirmed by the fact that inhibition of endogenous KLK8 expression with a specific short hairpin RNA enhanced cancer cell invasiveness. In situ degradation and cell adhesion assays showed that proteins produced from KLK8 splice variants modify the extracellular microenvironment by cleaving fibronectin. DNA microarray experiments and cell staining for actin filaments revealed that the degradation of fibronectin by hK8 suppresses integrin signaling and retards cancer cell motility by inhibiting actin polymerization. In addition, studies in a mouse model coupled with detection of circulating tumor cells by quantitative PCR for the human Alu sequence demonstrated that KLK8 suppresses tumor growth and invasion in vivo. Furthermore, studies of clinical specimens from non-small cell lung cancer (NSCLC) patients showed a 52% recurrence rate for early-stage (stage I & II) patients with low KLK8 expression in their tumor cells and a 23% recurrence rate for patients with high KLK8 expression. Collectively, these findings show that KLK8 retards cancer metastasis and that further investigation of KLK8 as a prognostic marker for NSCLC is warranted.
The most promising way to improve prognosis is by means of early metastasis detection. Thus, the other project in this thesis study is focused on detection of disseminated cancer cells of non-small cell lung cancer patients in their peripheral blood. Current lung cancer staging and prognosis methods are based on imaging methods which may not be sensitive enough for early and accurate detection of metastasis. A panel of markers was validated for circulating cancer cell detection to improve the accuracy of cancer staging, prognosis, and as a rapid assessment of therapeutic response. NCI-CGAP database was used to identify potential marker genes for the detection of circulating cancer cells in peripheral blood. A panel of 4 marker genes was identified and experimentally validated. With these marker genes, the results achieved an overall positive detection rate of 72% for circulating cancer cells in the peripheral blood of 54 NSCLC patients. Nested real-time quantitative PCR (qPCR) and a scoring method using cancer cell load, Lc, were employed to correlate the amount of circulating cancer cells with clinical outcomes in NSCLC patients. Patients who had higher Lc values had worse outcomes and shorter survival times. Patients with poor therapeutic response were revealed by positive detection of circulating cancer cells after therapy. The results correlated well with the patients’ survival time. Circulating cancer cell detection by a panel of markers and the Lc scoring method can supplement the current TNM staging method for improved prognosis and for rapid assessment of therapeutic response. Together, they may facilitate the design of better therapeutic strategies for the treatment of NSCLC patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:48:57Z (GMT). No. of bitstreams: 1
ntu-95-D90448004-1.pdf: 1330137 bytes, checksum: 78c07cf928f64db536dcc78c42a8d183 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要…………………………………………………………………………… 1
ABSTRACT…………………………………..…………………………..………… 3
1. Metastasis in Lung Cancer – from Molecular Study to Clinical Prognosis
1.1 Human lung cancer……………………….……….………………………………5
1.2 The basic biology of metastasis …………………………………………………. 6
1.3 Molecules involved in metastasis…………………………….…………………… 7
1.3.1 Changes in cell-cell and cell-matrix adhesion…………………….…………… 8
1.3.2 Metastasis-promoting and metastasis-suppressor genes…………………….… 9
1.4 Clinical tools in the detection of lung cancer metastasis……………………..… 10
1.5 The clinical problem: predicting metastatic propensity…………………………. 10
2. Identify Metastasis Associated Genes in Lung Cancer
2.1 Molecular signature of metastasis and its implication…….…………..…..…… 13
2.2 Transcript-specific expression………….………………..….……………….…. 14
2.3 Strategy to identify the metastasis associated genes in the lung cancer model… 15
2.4 Materials and methods
2.4.1 RT-PCR analysis…………….……………………………………………. 15
2.5 Identification of metastasis associated genes in the lung cancer model…….…. 15
3. Characterization of the Role of Kallikrein 8 in Metastasis
3.1 Kallikreins in cancer progression……………………………………………….…. 17
3.2 Kallikrein 8 as a biomarker for cancer prognosis………………………..….…. 18
3.3 Rationale for characterizing the association of KLK8 in metastasis……………. 18
3.4 Materials and methods
3.4.1 Cell lines ………………………………………..………………..………. 18
3.4.2 RT-PCR analysis of KLK8 expression in cancer cell lines ……….……… 19
3.4.3 KLK8 gene transcripts construction and retroviral infection ……………. 19
3.4.4 Detection of proteins generated by the KLK8 splice variants …………….. 20
3.4.5 Lentiviral short hairpin RNA (shRNA)-mediated knockdown of KLK8 in CL1-0 cells……………………………………………………………..… 20
3.4.6 in situ fibronectin (FN) degradation and cell adhesion assays…………… 21
3.4.7 Microarray gene expression profile analysis……………………………… 22
3.4.8 qPCR detections……………………………………………..……..……. 22
3.4.9 Immunofluorescence imaging of F-actin and filopodia …………………. 24
3.4.10 Analysis of tumor growth rate affected by hK8 expression……..……… 24
3.4.11 Monitoring tumor growth by magnetic resonance imaging (MRI)….…. 24
3.4.12 Mouse tumor cell invasion model…………..………………………..…. 25
3.4.13 Lung cancer patients and tissue specimens……………………..……….. 25
3.4.14 Statistical analysis………………………………………….……………. 26
3.5 Results
3.5.1 High expression of KLK8 transcripts correlates with low invasiveness of cancer cell lines………….…………………………………………..… 26
3.5.2 KLK8 is overexpressed in weakly invasive lung cancer cells……..…….… 27
3.5.3 Overexpression of KLK8 decreases the invasiveness of lung cancer cells …………………………………………………..………………… 28
3.5.4 hK8 degrades FN and decreases cell adherence………………..…………. 29
3.5.5 Gene expression profiling in KLK8-transfected cells…..………………… 29
3.5.6 KLK8 overexpression suppresses tumor growth and cancer cell invasion in vivo………………..…………………………………………………… 31
3.5.7 Early-stage NSCLC patients with high KLK8 expression have a longer remission time and a lower rate of recurrence…..…….……………….. 32
3.6 Discussion ………………………………………………………………………. 33
4. Development of Clinical Prognosis Assay for Non-Small Cell Lung Cancer Patients
4.1 Metastasis in early stage NSCLC - an increasing problem………………… 37
4.2 Early detection of metastasis…………………………………………..……….. 37
4.3 Strategy of detecting circulating tumor cells in blood……..…..……………… 38
4.4 Materials and methods
4.4.1 Patients and specimens …………………………………………………… 39
4.4.2 Identification of candidate marker genes ……..……..………………….. 40
4.4.3 Sample collection and RNA preparation ……………….………………… 40
4.4.4 Nested RT-PCR assay …………………………………………………….. 40
4.4.5 Semi-quantification of the nested PCR results ……………….…………. 41
4.4.6 Statistical analysis ……………………………………………………….. 42
4.5 Results
4.5.1 Marker genes for detecting circulating NSCLC cells …………………….. 42
4.5.2 Enhancement of positive detection rate with multiple genes.….…..……. 43
4.5.3 Circulating cancer cell load and patient outcome ……………….….…….. 44
4.5.4 Assessment of therapy efficacy …………..………………………..……… 45
4.6 Discussion ………………………………………………………………………. 46
FIGURES
1. Differential transcript-specific expression profiles in the lung cancer model……. 51
2. KLK8 expression profiles in different cancer cell types with different degrees of invasiveness………………………………………………………………..…… 52
3. Multiple splice variants of KLK8 are overexpressed in weakly invasive lung cancer cells, CL1-0……………………………………………………………..………. 53
4. Overexpression of KLK8 in lung cancer cell line, CL1-5………………………. 54
5. KLK8 was associated with cancer cell invasion…………………………………. 55
6. hK8 degrades FN and decreases cell adherence…………………………………. 56
7. Gene expression profiling in KLK8-transfected cells…………………..……….. 57
8. Analysis of tumor growth rate affected by hK8 expression in an animal model…58
9. Spin echo T2-weighted images and maps of permeability factor (K) of MRI detection in an animal model…………………………………………………… 59
10. Tumor mass analysis on the 14th day after subcutaneous implantation of tumor cells……………………………………………………………………..……… 60
11. Detection of disseminated tumor cells in an animal model…………………….. 61
12. Expression of KLK8 in tumor tissue specimens from 88 NSCLC patients…….. 62
13. The flowchart of screening a panel of marker genes for detecting circulating cancer cells………………………………………………………………..……. 63
14. Determination of the positive detection threshold for TRIM28 marker gene with residual expression in leukocytes………………………………………………. 64
15. Analysis of positive detection rates with the multi-marker gene panel………… 65
16. Lc value characterization……………………………………………………….. 66
17. Survival analysis of late stage patients with high (&sup3;1) or low (<1) Lc values…. 67
18. Assessment of therapy efficacy with circulating tumor cell detection for six different NSCLC patients…………………………………………….………… 68
TABLES
1. Clinicopathologic characteristics and their correlation with KLK8 expression of NSCLC patients……………………………………………………………..…. 69
2. DNA sequences of the PCR primer pairs for detecting the marker genes……….. 70
3. List of a panel of 19 marker genes……………………………………………….. 71
4. List of a panel of four marker genes………………………………………………. 72
5. Clinicopathologic characteristics and their correlation with Lc value of NSCLC patients………………………………………………………………………….. 73
APPENDIX
1. AS primers of 190 genes…………………………………………………………. 74
2. List of 34 genes with single transcript difference in cancer model……………… 81
3. List of 18 genes with multiple isoforms difference in cancer model…………….. 82
4. Genes whose expression profiles are concordant with the expected profile…….. 83
5. Pathways involving the 448 genes of the most concordant cluster……………… 96
6. DGED list from lung cancer library vs. leukocyte library……………………….. 98
REFERENCE………………………………………………………………………100
dc.language.isoen
dc.subject轉移zh_TW
dc.subject肺癌zh_TW
dc.subjectmetastasisen
dc.subjectlung canceren
dc.title肺癌轉移相關基因之探討暨臨床預後方法之研發zh_TW
dc.titleCharacterization of Metastasis Associated Genes and Development of Clinical Prognosis Assay for Lung Canceren
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee李芳仁(Fang-Jen Lee),譚婉玉(Woan-Yuh Tarn),白果能(Konan Peck)
dc.subject.keyword肺癌,轉移,zh_TW
dc.subject.keywordlung cancer,metastasis,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2006-07-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved