請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33896完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 石正人 | |
| dc.contributor.author | Wen-Chen Yang | en |
| dc.contributor.author | 楊文承 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:48:26Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | Allen C, Briano JA, Varone L, Oi DH, Valles SM. 2010. Exploitation of a high genomic mutation rate in Solenopsis invicta virus 1 to infer demographic information about its host, Solenopsis invicta. J Inver Pat 105: 105-111.
Allen C, Valles SM, Strong CA. 2011. Multiple virus infections occur in individual polygyne and monogyne Solenopsis invicta ants. J Inver Pathol 107: 107-111. Antunes A, Troyer JL, Roelke ME, Jill PS, Packer C, Winterbach C, Winterbach H, Hemson G, Frank L, Philip S, Ludwig S, Margaret D, Paul JF, Kathy AA, Katherine CP, Gus M, David W, Bush M, Stephen JO, Johnson WE. 2008. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics. J Invertebr Pathol 4: 11-22. Ascune MS, Yang CC, Oakey J, Calcaterra L, Wu WJ, Shih CJ, Goudet J, Ross KG, Shoemaker DD. 2011. Global invasion history of the fire ant Solenopsis invicta. Science 331: 1066-1068. Austin LH, Mary AKH. 2007. More effective purifying selection on RNA viruses than in DNA viruses. Gene 404: 117-125. Azad AF, Sacci JB, Jr, Nelson WM, Dasch GA, Schmidtmann ET, Carl M. 1992. Genetic characterization and transovarial transmission of a typhus-like rickettsia found in cat fleas. Science 89: 43-46. Banks WA, Lofgren CS. 1991. Effectiveness of the insect growth regulator pyriproxyfen against the red imported fire ant (Hymenoptera: Formicidae). J Entomol Sci 26: 331-339. Barr CL. 2003. Fire ant mound and foraging suppression by indoxacarb bait. J Agric Urban Entomol 20: 143-150. Biek R, Drummond AJ, Poss M. 2006. A virus reveals population structure and recent demographic history of its carnivore host. Science 311: 538-541. Bonning BC. 2009. The Dicistroviridae: an emerging family of invertebrate viruses. Virol Sin 24: 415-427. Callcott AA, Collins HL. 1996. Invasion and range expansion of imported fire ants (Hymenoptera: Formicidae) in North America from 1918-1995. Fla Entomol 79: 240-251. Campanella M, DeJong AS, Lanke KWH, Melchers WJG, Willems PHGM, Pinton P, Rizzuto R, VanKuppeveld FJM. 2004. The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem 279: 18440-18450. Criscione CD, Becky C, Bloationuin MS. 2006. Parasite genotype identify source population of migratory fish more accurately than fish genotypes. Ecology 87: 823-828. Christian P, Carstens E, Domier L, Johnson K, Nakashima N, Scotti P, Van D W F. 2000. Cricket paralysis-like viruses. In: Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, pp. 678-683. Chao, L. 1988. Evolution of sex in RNA viruses. J Theor Biol 133: 99-112. Chao, L. 1990. Fitness of RNA virus decreased by Muller’s ratchet. Nature 348: 454-455. Chao, L. 1997. Evolution of sex and the molecular clock in RNAviruses. Gene 205: 301-308. Chen JSC, Shen CH, Lee HJ. 2006. Monogynous and polygynous red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Taiwan. Environ Entomol 35: 167-172. Chen YC, Kafle L, Shih CJ. 2011. Interspecific competition between Solenopsis invicta and two native ant species, Pheidole fervens and Monomorium chinense. J Econ Entomol 104: 614-621. Collins HL, Callcott AM. 1998. Fipronil: an ultra-low dose bait toxicant for control of red imported fire ants (Hymenoptera: Formicidae). Fla Entomol 81: 407-415. David WC, Beasley C. Davis T, Guzman H, Dana L. 2003. Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology 309: 190-195. Domingo E, Holland JJ. 1997. RNA virus mutations and fitness for survival. Annu Rev Microbiol 51: 151-178. Domingo E. 1998. Quasispecies and the implications for virus persistence and escape. Clin Diagn Virol 10: 97-101. Domingo E, Escarmis C, Sevilla N, Baranowski E. 1998. Population dynamics in the evolution of RNA viruses. Adv Exp Med Biol 440: 721-727. Domingo E, Carmen MRJ, Sierra S, Arias A, Pariente N, Baranowski E, Escarmiss C. 2002. Structure of foot-and-mouth disease virus RNA-depedent RNA polymerase and its complex with a template-primer RNA. Virus 82: 39-44. Drake JW, Charlesworth B, Charlesworth D, Crow JF. 1998. Rates of spontaneous mutation. Genetics 148: 1667-1686. Duarte, E, Clarke D, Moya A, Domingo E. 1992. Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proc Natl Acad Sci USA 89: 6015-6019. Ecarmís S, Lázaro E, Manrubia SC. 2006. Population bottlenecks in quasispecies dynamics. Curr Top Microbiol Immunol 299: 141-170. Eigen M. 1993. Viral quasispecies. Sci Am 269: 42-49. Escarmis, C., M. Davila, N. Charpentier, A. Bracho, A. Moya, and E. Domingo. 1996. Genetic lesions associated with Muller’s ratchet in an RNA virus. J Mol Biol 264: 255-267. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M. 2003. Traces of human migrations in Helicobacter pylori populations. Science 299: 1582-1585. Freistadt MS, Vaccaro JA, Eberle KE. 2007. Biochemical characterization of the fidelity of poliovirus RNA-dependent RNA polymerase. J Virol 4: 44-49. Fu YX. 1997. Statiscal tests of neautrlity of mutation against population growth, hitchhiking and background selection. Genetics 147: 915-925. Fu YX, Li WH. 1993. Statiscal tests of neautrlity of mutation. Genetics 133: 693-704. Hardwick JM. 2001. Apoptosis in viral pathogensis. Cell Death Differ 8: 109-110. Hashimoto Y, Valles SM. 2007. Solenopsis invicta virus-1 tissue tropism and intra-colony infection rate in the red imported fire ant: a quantitative PCR-based study. J Invertebr Pathol 96: 156-161. Hashimoto Y, Valles SM, Strong CA. 2007. Detection and quantitation of Solenopsis invicta virus in fire ants by real time PCR. J Virol Methods 140: 132-139. Hashimoto Y, Valles SM, Strong CA. 2008. Infection characteristics of Solenopsis invicta virus 2 in the red imported fire ant, Solenopsis invicta. J Invertebr Pathol 99: 136-140. Henshaw MT, Kunzmann N, Vanderwoude C, Sanetra M, Crozier RH. 2005. Population genetics and history of the introduced fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Australia. Aust J Entomol 44: 37-44. Holland J, Katherine S, Frank H, Elizabeth G, Stuart N, Scott V. 1982. Rapid evolution of RNA genomes. Science 215: 1577-1585. Hsu HW. 2010. Characterization of a Dicistrovirus Taiwan Isolate, SINV-1 (TW), and its impact on the red imported fire ant, Solenopsis invicta, in Taiwan. Unpublish.(in Chinese) Huang, TC, Chou YC. 2004. The infestation and control of the red imported fire ant in Taiwan. pp. 1-13. In: C. J. Shih, and W. J. Wu, eds. Proceedings of the Symposium on the Control of the Red Imported Fire Ant. Academic Press, Taiwan. Johnson KN, Christian PD. 1999. Molecular characterization of Drosophila C virus isolates. J Invertebr Pathol 73: 248-254. Kimura M, 1968. Evolutionary rate at the molecular level. Nature 217: 624-626. Kimura M, 1983. The neutral theory of molecular evolution. Cambridge University press, Cambridge. Koonin, EV. 1991. The phylogeny of RNA-dependent RNA polymerase of positivestrand RNA viruses. J Gen Virol 72: 2197-2206. Koonin EV, Dolja VV. 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28: 375-430. Kwok S, R Higuchi. 1989. Avoiding false positives with PCR. Nature 339: 237-238. Lacey LA, David IS. 2008. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53: 121-144. Lee YH, Ota T, Vacquier VD. 1995. Positive selection is a general phenomenon in the evolution of abalone sperm lysine. Mol Biol Evol 12: 231-238. Lowe S, Browne M, Boudjelas S, Poorter MD. 2000. 100 of the world’s worst invasive alien species: A selection from the global invasive species database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12 pp. First published as special lift-out in Aliens 12. Dec. 2000. Updated and reprinted version: Nov. 2004. Lukashev AN, Lashkevich VA, Ivanova OE, Koroleva GA, Hinkkanen AE, Ilonen J. 2005. Recombination in circulating Human enterovirus B: independent evolution of structural and non-structural genome regions. J Gen Virol 86: 3281-3290. Manrubia SC, Ecarmís S, Domingo E, Lázaro E. 2005. High mutation rates, bottlenecks, and robustness of RNA viral quasispecies. Gene 347: 273-282. Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV. 2011. Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J Gen Virol 92: 156-161. Maori E, Lavi S, Mozes-Koch R, Gantman Y, Peretz Y, Edelbaum O, Tanne E, Sela I. 2007. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intraand inter-species recombination. J Gen Virol 88: 3428-3438. Morrison LW, Porter SD, Daniels E, Korzukhin MD. 2004. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions 6: 183-191. Moscardi F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44: 257-289. Nattrass R, Vanderwoude C. 2001. A preliminary investigation of the ecological of red imported fire ants (Solenopsis invicta) in Brisbane. Ecol Manag Rdstor 2: 220-223. Oi DH, Becnel JJ, Williams DF. 2001. Evidence of intracolony transmission of Thelohania solenopsae in red imported fire ants and the first report of spores from pupae. J Invertebr Pathol 78: 128-134. Oi DH, Williams DF, Pereira RM, Horton P, Davis TS, Hyder AH, Bolton HT, Zeichner BC, Porter SD, Hoch AL, Boswell ML, Williams G. 2008. Combining biological and chemical controls for the management of red imported fire ants (Hymenoptera: Formicidae). Am Entomol 54: 44-53. Peloquin JJ, Greenberg L. 2003. Identification of midgut bacteria from fourth instar red imported fire ant larvae, Solenopsis invicta Buren (Hymenoptera: Formicidae). J Agric Urban Entomol 20: 157-164. Porter SD. 1992. Frequency and distribution of polygyne fire ants (Hymenoptera: Formicidea) in Florida. Fla Entomol 75: 248-257. Porter SD, Fowler HG, Mackay WP. 1992. Fire ant mound densities in the United States and Brazil (Hymenoptera: Formicidae). J Econ Entomol 85: 1154-1161. Reanney DC. 1982. The evolution of RNAviruses. Annu Rev Microbiol 36: 47-73. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. Sugimoto C, Kitamura T, Guo J, Al-Ahdal MN, Shchelkunov SN. Typing of urinary JC virus DNA offers a novel means of tracing human migrations. 1997. Science 94: 9191-9196. Tajima F. 1983. Evolutionary relationship of DNA sequences in finite population. Genetics 105: 437-460. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetic 123: 585-595. Tschinkel WR. 2006. The Fire Ants. The Belknap Press of Harvard University Press, Cambridge. Tufts DM, Hunter WB, Bextine B. 2010. Discovery and effects of Texas Solenopsis invicta virus [SINV-1 (TX5)] on red imported fire ant populations. J Invertebr Pathol 104: 180-185. Valles SM, Strong CA. 2005. Solenopsis invicta virus-1A (SINV-1A) : Distinct species or genotype of SINV-1? J Invertebr Pathol 88: 232-237. Valles SM, Hashimoto Y. 2009. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting red imported fire ant, Solenopsis invicta. Virology 388: 354-361. Valles SM, Strong CA, Dang PM, Hunter WB, Pereira RM, Oi DH, Shapiro AM, Williams DM. 2004. A picorna-like virus from the red imported fire ant, Solenopsis invicta: initial discovery, genome sequence, and characterization. Virology 328: 151-157. Valles S.M, Varone L, Ramirez L, Briano J. 2009. Multiplex detection of Solenopsis invicta viruses -1, -2, and -3. J Virol Methods 162: 276-279. Wang WK, Sung TL, Lee C N, Lin TY, King CC. 2002. Sequence diversity of the capsid gene and the nonstructural gene NS2B of dengue-3 virus in vivo. Virology 303: 181-191. Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K, Soolingen D, Rüsch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S. 2008. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathol 4: 1-10. Yang CC, Yu YC, Valles SM, Oi DH, Chen YC, Shoemarker D, Wu WJ, Shih CJ. 2010. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions 12: 3307-3318. Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences: CABIOS 13: 555-556. Zhang R, Li Y, Liu N, Porter SD. 2007. An overview of the red imported fir ant (Hymenoptera: Formicidae) in mainland China. Fla Entomol 90: 723-731. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33896 | - |
| dc.description.abstract | 入侵紅火蟻 (Solenopsi.invicta),於近十年入侵台灣、香港以及中國大陸後,也發現入侵紅火蟻病毒 (Solenopsis invicta virus-1, SINV-1) 伴隨其寄主一起入侵。由於病毒複製時間短,繁殖速度快,因此病原體的快速演化相比於寄主的基因體具有更高的遺傳多樣性,對寄主的族群動態變化,提供了更加詳細而靈敏的證據。以往的研究顯示,該病毒藉由其極高的突變及演化速率,可成為另一種遺傳標誌,用來彌補寄主在入侵時,因族群量少而造成的基因體變異較少的缺陷。本研究採用四種在 3’ ORF (open reading frame)之病毒蛋白基因序列 (VP1、VP2、VP3 以及 VP4),比對其序列變異,闡明在近十年來入侵亞洲之大部分紅火蟻病毒,皆和現今所發表的病毒基因型皆不同,此可能是因為火蟻入侵新地區後,發生適應選汰的現象。這些病毒蛋白基因序列皆顯示,在近期入侵的區域所出現的紅火蟻病毒基因型,也可在美國當地的蟻巢中發現,顯示入侵紅火蟻最有可能從美國入侵到台灣。為了更加了解這種新發現的基因型火蟻病毒,本研究進行亞洲型入侵紅火蟻病毒之全基因體解序,證實其為紅火蟻病毒的另一基因型,且將之命名為 SINV-1-Asia。原先存在於美國的 SINV-1-Asia 基因型既然可於新入侵地區發現,其他 SINV-1 基因型也應有機會發現。藉由此想法,於台灣樣本 (編號 138) 之 VP4 片段上,偵測到類似 SINV-1 (TX5) 序列,這意味著 SINV-1 以及 SINV-1A 也有機會在新入侵地出現。因此未來若該病毒任何一基因型真能於防治上有所幫助,新入侵地將可直接實行。 | zh_TW |
| dc.description.abstract | Rapidly evolving pathogens provide a powerful approach to address population dynamic of the host, under several circumstances, in a more detailed fashion than the genetic marker from host’s genome. Previous studies have shown that Solenopsis invicta virus-1 (SINV-1) often accompanies with the recent invasions of its host, the red imported fire ant (S. invicta), into Taiwan, Hong Kong and China in last decades. This virus, with its extremely high mutation and fast evolution, may therefore serve as an additional genetic marker that potentially compensates reduced host’s genetic variation associated with small propagule size during invasion. The present study therefore employs sequences of four viral protein genes (VP1, VP2, VP3 and VP4) in ORF2 to reveal that most of recently introduced SINV-1 genotypes in Asia are different from those previously published, suggesting the possible involvement of adaptive selection. Sequence analyses from those viral genes indicate that this SINV-1 genotype identified in the recently introduced areas can also be found in the USA, suggesting that SINV-1 is introduced from the US to Taiwan. For better understanding of this newly-discovered genotype, the whole genome sequence of the genotype of this virus was obtained, and viral phylogenomic analysis confirms it a derived variant of SINV-1, and called it SINV-1-Asia. Other SINV-1 genotypes might present in those recently introduced areas because SINV-1-Asia originated from the US can also be found in Asia. Based on this idea, I did find SINV-1 (TX5)-like sequences at VP4 in sample (number 138) collected in Taiwan. It therefore seems possible to find SINV-1 and SINV-1A in newly introduced areas. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:48:26Z (GMT). No. of bitstreams: 1 ntu-100-R98632007-1.pdf: 632069 bytes, checksum: 222d6890d9be92a9a3b27b85d7acf8ca (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要......................................................i
Abstract.................................................ii 致謝....................................................iii 目錄.....................................................iv 圖目錄..................................................vii 表目錄.................................................viii 壹、前言..................................................1 貳、往昔研究..............................................4 一、入侵紅火蟻病毒 Solenopsis invicta virus-1 之簡介......4 二、利用病原體基因分析族群間之親緣關係....................5 三、關於 RNA 病毒與選汰...................................6 参、材料與方法............................................8 一、入侵紅火蟻樣本來源....................................8 二、病毒檢測..............................................8 (一) RNA 萃取.............................................8 (二) cDNA 合成............................................9 (三) 檢測 SINV-1 基因序列.................................9 (1) RdRp基因序列..........................................9 (2) VP1基因序列...........................................9 (3) VP2基因序列..........................................10 (4) VP3基因序列..........................................10 (5) VP4基因序列..........................................11 (四) 內對照組............................................11 (五) 台灣及美國樣本各五巢之RdRp、VP1、VP2、VP3 VP4 cloning............................................11 (1) DNA分子的連接 (ligation).............................11 (2) 轉型作用.............................................12 (3) 塗碟.................................................12 (4) 挑菌及搖菌...........................................12 (5) 萃取質體DNA (plasmid DNA)............................12 (6) PCR¬¬-check..........................................12 (六) 序列分析............................................12 (1) 校正序列以及排序.....................................13 (2) 製作親緣關係樹圖.....................................13 (3) 選汰分析.............................................13 肆、結果.................................................15 一、火蟻採樣及病毒檢測...................................15 (1) 各國之RdRp基因片段偵測...............................15 (2) 各國之VP1 (p341/p343) 基因片段偵測...................15 (3) 亞洲蟻巢之VP1 (Asia vp2.1.2f/p341) 基因片段偵測......15 (4) 亞洲蟻巢之VP2 (Asian vp2.1f/Asian vp2.1r) 基因片段偵 測...................................................16 (5) 亞洲蟻巢之VP3 (Asian vp2.2.4f/Asian vp2.2.2r) 基因片段偵 測...................................................16 (6) 亞洲蟻巢之VP4 (Asian vp4.1f/Asian vp4.2r) 基因片段偵 測...................................................16 二、台灣蟻巢內RdRp基因片段序列比較.......................16 三、台灣蟻巢內VP1 (p341/p343) 基因片段序列比較...........17 四、台灣巢間RdRp基因序列比較.............................17 五、台灣巢間VP1 (p341/p343) 基因序列比較.................17 六、亞洲巢間VP1 (Asia 2.1.2f/p341) 與美國樣本序列比較....17 七、利用新設計VP1引子偵測的FA13、FA138以及FA144做 cloning..............................................19 八、亞洲樣本之VP2 (Asian vp2.1f/Asian vp2.1r) 與美國樣本序列 比較.................................................21 九、亞洲樣本之VP3 (Asian vp2.2.4f/Asian vp2.2.2r) 與美國樣本 序列比較.............................................23 十、亞洲樣本之VP4 (Asian vp4.1f/Asian vp4.2r) 與美國樣本序列 比較.................................................25 十一、SINV-1-Asia的來源..................................28 十二、SINV-1-Asia於入侵亞洲所承受的選汰壓力..............31 十三、在台灣是否具有SINV-1、SINV-1A 以及 SINV-1 (TX5)....31 伍、討論.................................................33 一、SINV-1-Asia在桃園蟻巢內以及蟻巢間基因變異程度........33 二、SINV-1-Asia在3’ ORF 之virus protein序列的基因型與 SINV-1比較......................................34 三、SINV-1-Asia的起源....................................35 四、在台灣是否具有 SINV-1、SINV-1A 以及 SINV-1 (TX5).....36 陸、結論.................................................37 柒、參考文獻.............................................38 捌、附錄.................................................47 圖目錄 圖一、不同來源之火蟻病毒利用新設計引子對所得之 VP1 序列親緣 關係比較。.........................................18 圖二、不同來源之火蟻病毒利用新設計引子對所得之 VP1 序列親緣 關係比較。.........................................20 圖三、不同來源之火蟻病毒利用新設計引子對所得之 VP2 序列親緣 關係比較。.........................................22 圖四、不同來源之火蟻病毒利用新設計引子對所得之 VP3 序列親緣 關係比較。.........................................24 圖五、不同來源之火蟻病毒利用新設計引子對所得之 VP4 序列親緣 關係比較。.........................................26 圖六、利用 VP gene 序列分析 SINV-1-Asia 與其他三種品系火蟻病 關係比較。.........................................28 表目錄 表一、SINV-1 之 VP1、VP2、VP3 以及 VP4 引子..............29 表二、SINV-1-Asia 之 VP1、VP2、VP3 以及 VP4 引子.........29 表三、利用 SINV-1 之 VP 引子偵測美國樣本 (編號 42) 取得之序 列與 SINV-1 以及 SINV-1-Asia 相對應序列之相似程度..30 表四、利用 SINV-1 之 VP 引子偵測美國樣本 (編號 43) 取得之序 列與 SINV-1 以及 SINV-1-Asia 相對應序列之相似程度..30 表五、利用 SINV-1-Asia 之各 VP 引子偵測美國樣本 (編號 42) 取 得之序列與 SINV-1 以及 SINV-1-Asia 相對應序列之相似程 度.................................................30 表六、利用 SINV-1-Asia 之各 VP 引子偵測美國樣本 (編號 43) 取 得之序列與 SINV-1 以及 SINV-1-Asia 相對應序列之相似程 度.................................................31 | |
| dc.language.iso | zh-TW | |
| dc.subject | 入侵紅火蟻 | zh_TW |
| dc.subject | 親緣關係分析 | zh_TW |
| dc.subject | 病毒蛋白基因 | zh_TW |
| dc.subject | 入侵紅火蟻病毒 | zh_TW |
| dc.subject | Solenopsis invicta | en |
| dc.subject | viral protein | en |
| dc.subject | phylogenetic | en |
| dc.subject | pathogens | en |
| dc.title | 新型入侵紅火蟻病毒之特徵鑑定及親緣關係 | zh_TW |
| dc.title | Characterization and Phylogeny of a New Type of Virus from the Red Imported Fire Ant (Solenopsis invicta) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃榮南,楊景程,王忠信 | |
| dc.subject.keyword | 入侵紅火蟻,入侵紅火蟻病毒,病毒蛋白基因,親緣關係分析, | zh_TW |
| dc.subject.keyword | pathogens,phylogenetic,Solenopsis invicta,viral protein, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 617.25 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
