Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃天偉(Tian-Wei Huang)
dc.contributor.authorKu-Teng Hsuen
dc.contributor.author許顧騰zh_TW
dc.date.accessioned2021-06-13T05:48:19Z-
dc.date.available2007-07-19
dc.date.copyright2006-07-19
dc.date.issued2006
dc.date.submitted2006-07-07
dc.identifier.citation[1] E. Pillai and W. Wiesbeck, “Derivation of equivalent circuits for multilayer printed circuit board discontinuities using full wave models,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1774-1783, Sept. 1994.
[2] E. Laermans, J. D. Geest, D. Zutter, F. Olyslager, S. Sercu, and D. Morlion, “Modeling complex via hole structures,” IEEE Trans. Adv. Packaging, vol. 25, pp. 206-213, May 2002.
[3] J. Fan, J. L. Drewniak, and J. L. Knighten,“Lumped-circuit model extraction for vias in multilayer substrates,” IEEE Trans. Electromagn. Compat., vol. 45, pp. 272-280, May 2003.
[4] T. Wang, R. F. Harrington, and J. R. Mautz, “Quasi-static analysis of a microstrip via through a hole in a ground plane,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1008-1013, June 1988.
[5] S. Luan, G. Selli, J. Fan, M. Lai, J. L. Knighten, N. W. Smith, R. Alexander, G. Antonini, A. Ciccomancini, A. Orlandi, and J. L. Drewniak, “SPICE model libraries for via transitions,” IEEE Int. Symp. Electromagn. Compat., vol. 2, pp. 859-864, Aug. 2003.
[6] E. Laermans, J. D. Geest, D. Zutter, F. Olyslager, S. Sercu, and D. Morlion, “Modeling differential via holes,” IEEE Trans. Adv. Packaging, vol. 24, pp. 357-363, Aug. 2001.
[7] S. Luan, G. Selli, J. L. Drewniak, A. D. Luca, G. Antonini, A. C. Scogna, and A. Orlandi, “Extraction of a SPICE Via Model from Full-Wave Modeling for Differential Signaling,” IEEE Int. Symp. Electromagn. Compat., vol. 2, pp. 577-582, Aug. 2004.
[8] H.W. Johnson and M. Graham, High-Speed Signal Propagation, Prentice-Hall, 1993, Ch.5.
[9] S. H. Hall, G. W. Hall, and J. A. Mccall, High-Speed Digital System Design, John Wiley &Sons, Inc., 2000, Ch.5.
[10] S. H. Hall, G. W. Hall, and J. A. Mccall, High-Speed Digital System Design, John Wiley &Sons, Inc., 2000, Ch.9.
[11] Ansoft, High Frequency Structure Simulator Version 9.1, (www.ansoft.com).
[12] M. Vai and S. Prasad, “Automatic impedance matching with a neural network,” IEEE Microwave Guided Wave Lett., vol. 3, no. 10, pp. 353-354, Oct. 1993.
[13] T. S. Horng, C. C. Wang, and N. G. Alexopoulos, “Microstrip circuit design using neural networks,” in MTT-S Int. Microwave Symp. Dig., 1993, pp. 413-416.
[14] A. H. Zaabab, Q. J. Zhang, and M. Nakhla, “Analysis and optimization of microwave circuits and devices using neural network models,” in MTT-S Int. Microwave Symp. Dig., 1994, pp. 393-396.
[15] A. H. Zaabab, Q. J. Zhang, and M. Nakhla, “A neural network modeling approach to circuit optimization and statistical design,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 6, pp. 1349-1358, June 1995.
[16] G. L. Creech, et al., “Artificial neural networks for accurate microwave CAD applications,” in MTT-S Int. Microwave Symp. Dig., 1996, pp. 733-736.
[17] P. Watson and K. C. Gupta, “EM-ANN models for via interconnects in microstrip circuits,” in MTT-S Int. Microwave Symp. Dig., 1996, pp. 1819-1822.
[18] J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q. J. Zhang, “Neuromodeling of microwave circuits exploiting space-mapping technology,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2417-2427, Dec. 1999.
[19] P. M. Watson and K. C. Gupta, “EM-ANN models for microstrip vias and interconnects in dataset circuits,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2495-2503, Dec. 1996.
[20] X. Ding, V. K. Devabhaktuni, B. Chattaraj, M. C. E. Yagoub, M. Deo, J. Xu, and Q. J. Zhang, “Neural-network approaches to electromagnetic-based modeling of passive components and their applications to high-frequency and high-speed nonlinear circuit optimization,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 436-449, Jan. 2004.
[21] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法,全華科技圖書,民國93年11月。
[22] J. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing , Prentice Hall Upper Saddle River, 1997, Ch.8.
[23]吳瑞北.何起予.歐陽昌廉.邱柏源,傳輸線的時域模擬,國科會計畫研究報告,1991年9月。
[24] D. M. Pozar, Microwave Engineering, John Wiley, 1998, Ch.4.
[25] Microwave Studio Version 5.1,(www.cst.com).
[26] R. R. Pantoja, M. J. Howes, J. R. Richardson, and R. D. Pollard “Improved calibration and measurement of the scattering parameters of microwave integrated circuit,” IEEE Tran. Microwave Theory Tech., vol. 37, pp. 1675-1680, Nov. 1989.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33891-
dc.description.abstract當資料傳輸速率到達數個十億位元的範圍以上,在印刷電路板上由連通柱所造成的不連續效應將不能再被忽略。為了分析連通柱結構對於信號完整度上的影響,通常會先針對實際的結構尺寸建立集總模型。連通柱的π等效電路包含了一個串接電感和兩個並接電容。利用全波模擬軟體可以計算出電容和電感值。全波模擬軟體雖然可以得到非常準確的結果,然而,卻需要花費相當多的時間,無法有效率地應用在實際的電路設計上。
近年來,利用電磁場觀念訓練的類神經網路分析方法逐漸被重視。利用電磁模擬軟體得到的數據,可以訓練出精確且計算迅速的類神經模型。利用這些類神經模型可以加快電路設計的時程,同時保有電磁模擬軟體的準確性。本論文提出一種方法,可以用來設計低反射雜訊的被動元件,如連通柱或是相似結構等。訓練完成後的多層類神經網路,可以針對特定的結構尺寸,快速計算出結構的阻抗值。當類神經網路模型建立之後,可以很輕易的在有興趣的尺寸範圍內,求出所有結構的阻抗值,並且找出和前後端微帶線阻抗匹配的連通柱設計解空間。最後利用時域模擬軟體與量測結果,來驗證解空間的正確性。
zh_TW
dc.description.abstractAs the data rates increase into the multi-gigabit range, the effect of via discontinuities on printed circuit board becomes non-negligible. Lumped-circuit models for via structures are usually constructed from their geometries to understand the signal integrity issues. The π-type equivalent circuit of a via consists of two excess capacitances and an excess inductance. Capacitance and inductance values can be computed using a full-wave solver. Full-wave characterization can lead to accurate results, however, it takes the tremendous computational efforts and is not practical for an efficient circuit design.
In recent years, the electromagnetically trained artificial neural network (EM-ANN) approaches have gained the recognition. Accurate and fast neural models can be developed from the simulated EM data. These neural models can speed up the circuit design with the accuracy compared to that of a full-wave solver. This thesis describes a methodology for designing a low-reflection passive component such as via structures or similar structures. The multi-layer neural network is trained to fast predict the impedance of vias based on the physical dimensions. Once the EM-ANN model has been trained, it is easy to derive a whole of impedance profile over the desired physical dimension range. The via structures are chosen with reference to the design solution space by the matching impedance thus to the microstrip line from two interconnected sides. The solution space is demonstrated by the time-domain simulations and measurements, accordingly.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:48:19Z (GMT). No. of bitstreams: 1
ntu-95-R93942007-1.pdf: 3195047 bytes, checksum: c07c027c55104f2009e562ec3dbfbc08 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 簡介 ………………………………………………………… 1
1-1研究動機…………………………………………………………… 1
1-2研究目的…………………………………………………………… 4
1-3研究方法與章節概要……………………………………………… 5
第二章 類神經網路之建構與應用…………………………………… 8
2-1類神經網路簡介…………………………………………………… 8
2-2類神經網路架構…………………………………………………… 9
2-3學習法則(Learning rules)………………………………………14
2-4誤差倒傳遞(Error back-propagation)學習法則………………16
2-5利用類神經網路分耦合微帶線……………………………………29
第三章 連通柱結構特性與解空間分析………………………………42
3-1連通柱等效電路……………………………………………………42
3-2連通柱不連續效應分析……………………………………………50
3-3特徵阻抗類神經網路建立…………………………………………54
3-4解空間(solution space) ……………………………………… 61
第四章 量測與模擬比較………………………………………………71
4-1TRL校正技術……………………………………………………… 71
4-2連通柱π型等效電路驗證………………………………………… 76
4-3連通柱低反射雜訊解空間驗證……………………………………82
第五章 結論……………………………………………………………88
dc.language.isozh-TW
dc.subject連通柱zh_TW
dc.subject製程解空間zh_TW
dc.subject類神經網路zh_TW
dc.subject阻抗匹配zh_TW
dc.subject不連續結構zh_TW
dc.subjectdiscontinuityen
dc.subjectneural networken
dc.subjectmatching impedanceen
dc.subjectviaen
dc.subjectdesign solution spaceen
dc.title利用類神經網路分析連通柱不連續結構之電氣特性與製程解空間zh_TW
dc.titleElectrical Characteristics of Via Discontinuity and Manufacturing Solution Space Analysis with the Neural Networks-Based Approachen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭建男(Chien-Nan Kuo),林建民(Chien-Min Lin),吳宗霖(Tzong-Lin Wu)
dc.subject.keyword類神經網路,連通柱,不連續結構,阻抗匹配,製程解空間,zh_TW
dc.subject.keywordneural network,via,discontinuity,matching impedance,design solution space,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2006-07-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved