Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33886
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華
dc.contributor.authorChien-Yeh Chenen
dc.contributor.author陳建燁zh_TW
dc.date.accessioned2021-06-13T05:48:12Z-
dc.date.available2006-07-14
dc.date.copyright2006-07-14
dc.date.issued2006
dc.date.submitted2006-07-08
dc.identifier.citation[1] Boesch, F., Tindell, R.: Robbins’ theorem for mixed multigraphs. Am. Math. Mon. 87, 716-719 (1980).
[2] Chivatal, V., Thomassen, C.: Distances in orientations of graphs. J. Comb. Theory, Ser. B 24, 61-75 (1978).
[3] Gutin, G.: m-sources in complete multipartite graphs. (In Russian) Ser. Fiz-Mat. Navuk. 5, 101-106 (1989).
[4] Gutin, G.: Minimizing and maximizing the diameter in orientation of graphs. Graphs Comb. 10, 225-230 (1994).
[5] Koh, K.M., Tan, B.P.: The diameter of an orientation of a complete multipartite graph. Discrete Math. 149, 131-139 (1996).
[6] Koh, K.M., Tan, B.P.: The minimum diameter of orientations of complete multipartite graphs. Graphs Comb. 12, 333-339 (1996).
[7] Koh, K.M., Tay, E.G.: On optimal orientations of cartesian product of graphs (II): complete graphs and even cycles. Discrete Math. 211, 75-102 (2000).
[8] Koh, K.M., Tay, E.G.: Optimal orientations of graphs and digraphs: a survey. Graphs Comb. 18, 745-756 (2002).
[9] Maurer, S.B.: The king chicken theorems. Math. Mag. 53, 67-80 (1980).
[10] Plesnik, J.: Diametrically critical tournaments. Casop. Pest. Matem. 100, 361-370 (1975).
[11] Plesnik, J.: Remarks on diameters of orientations of graphs. Acta. Math. Univ. Comenianae. 46/47, 225-236 (1985).
[12] Robbins, H.E.: A theorem on graphs with an application to a problem of traffic control. Am. Math. Mon. 46, 281-283 (1939).
[13] Soltes, L.: Orientations of graphs minimizing the radius or the diameter. Math. Slovaca 36, 289-296 (1986).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33886-
dc.description.abstractRobbins 研究單行道問題時,證明了一個連通圖有強定向的充分必要條件是此圖中沒有橋。除了強定向的存在性之外,一個有趣且實際的問題是,這些強定向的最小直徑的長度為何? 更精確地說,對於一個給定的圖 G ,用 D(G) 表示圖 G 的所有強定向所成的集合。圖 G 的每一種定向都有一個直徑,其中最小的直徑其長度記為d(G), 是我們所要決定的目標參數。
關於完全多部圖的 d(G) 值,已知是 2 或 3 ,但是在許多情形下,還無法決定究竟是 2 還是 3 。在這篇論文中,我們決定了一些完全三部圖的 d(G) 值。此外,我們找到了 d(G) 值為 2 的一類部數大於三的完全多部圖。
zh_TW
dc.description.abstractOn investigating the one-way street problem, Robbins proved that a connected graph has a strong orientation if and only if it has no bridges. An interesting and practical problem is that, besides the existence of a strong orientation, what is the minimum diameter of such an orientation. More precisely, for a given graph G, denote D(G) the family of all strong orientations of G. The object parameter then is
d(G) = min{d(D) : D 2 D(G)}. Denote K(p1, p2, . . . , pn) the complete n-partite graph having pi vertices in the ith partite set. While it is known that 2< = d(K(p1,p2, . . . , pn)) < = 3 for n > = 3, there are still many ~d(K(p1, p2, . . . , pn)) remain un-determined.
In this thesis, we establish some new results. We determine d(G) of some complete 3-partite graphs. Also, we find a family of complete multipartite graphs G with d(G)=2, for n>3.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:48:12Z (GMT). No. of bitstreams: 1
ntu-95-R93221001-1.pdf: 435763 bytes, checksum: 7727ea0a5e56086c759f67d572fce4ec (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAcknowledgements i
Abstract in Chinese ii
Abstract in English iii
1 Introduction 1
2 Preliminary 4
3 The value of d(K(p1, p2, p3)) 7
4 Graphs K(p1, . . . , pn) with d(K(p1, . . . , pn)) = 2,
for n > = 4 16
References 26
dc.language.isoen
dc.subject直徑zh_TW
dc.subject賦向zh_TW
dc.subject完全多部圖zh_TW
dc.subjectcomplete multipartite graphen
dc.subjectdiameteren
dc.subjectorientationen
dc.title論賦向完全多部圖之最小直徑zh_TW
dc.titleOn the Minimum Diameter among Orientations of Complete
Multipartite Graphs
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉鴻國,廖勝強,顏經和,郭大衛
dc.subject.keyword賦向,完全多部圖,直徑,zh_TW
dc.subject.keyworddiameter,orientation,complete multipartite graph,en
dc.relation.page27
dc.rights.note有償授權
dc.date.accepted2006-07-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
425.55 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved