請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鎮華 | |
| dc.contributor.author | Chien-Yeh Chen | en |
| dc.contributor.author | 陳建燁 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:48:12Z | - |
| dc.date.available | 2006-07-14 | |
| dc.date.copyright | 2006-07-14 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-08 | |
| dc.identifier.citation | [1] Boesch, F., Tindell, R.: Robbins’ theorem for mixed multigraphs. Am. Math. Mon. 87, 716-719 (1980).
[2] Chivatal, V., Thomassen, C.: Distances in orientations of graphs. J. Comb. Theory, Ser. B 24, 61-75 (1978). [3] Gutin, G.: m-sources in complete multipartite graphs. (In Russian) Ser. Fiz-Mat. Navuk. 5, 101-106 (1989). [4] Gutin, G.: Minimizing and maximizing the diameter in orientation of graphs. Graphs Comb. 10, 225-230 (1994). [5] Koh, K.M., Tan, B.P.: The diameter of an orientation of a complete multipartite graph. Discrete Math. 149, 131-139 (1996). [6] Koh, K.M., Tan, B.P.: The minimum diameter of orientations of complete multipartite graphs. Graphs Comb. 12, 333-339 (1996). [7] Koh, K.M., Tay, E.G.: On optimal orientations of cartesian product of graphs (II): complete graphs and even cycles. Discrete Math. 211, 75-102 (2000). [8] Koh, K.M., Tay, E.G.: Optimal orientations of graphs and digraphs: a survey. Graphs Comb. 18, 745-756 (2002). [9] Maurer, S.B.: The king chicken theorems. Math. Mag. 53, 67-80 (1980). [10] Plesnik, J.: Diametrically critical tournaments. Casop. Pest. Matem. 100, 361-370 (1975). [11] Plesnik, J.: Remarks on diameters of orientations of graphs. Acta. Math. Univ. Comenianae. 46/47, 225-236 (1985). [12] Robbins, H.E.: A theorem on graphs with an application to a problem of traffic control. Am. Math. Mon. 46, 281-283 (1939). [13] Soltes, L.: Orientations of graphs minimizing the radius or the diameter. Math. Slovaca 36, 289-296 (1986). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33886 | - |
| dc.description.abstract | Robbins 研究單行道問題時,證明了一個連通圖有強定向的充分必要條件是此圖中沒有橋。除了強定向的存在性之外,一個有趣且實際的問題是,這些強定向的最小直徑的長度為何? 更精確地說,對於一個給定的圖 G ,用 D(G) 表示圖 G 的所有強定向所成的集合。圖 G 的每一種定向都有一個直徑,其中最小的直徑其長度記為d(G), 是我們所要決定的目標參數。
關於完全多部圖的 d(G) 值,已知是 2 或 3 ,但是在許多情形下,還無法決定究竟是 2 還是 3 。在這篇論文中,我們決定了一些完全三部圖的 d(G) 值。此外,我們找到了 d(G) 值為 2 的一類部數大於三的完全多部圖。 | zh_TW |
| dc.description.abstract | On investigating the one-way street problem, Robbins proved that a connected graph has a strong orientation if and only if it has no bridges. An interesting and practical problem is that, besides the existence of a strong orientation, what is the minimum diameter of such an orientation. More precisely, for a given graph G, denote D(G) the family of all strong orientations of G. The object parameter then is
d(G) = min{d(D) : D 2 D(G)}. Denote K(p1, p2, . . . , pn) the complete n-partite graph having pi vertices in the ith partite set. While it is known that 2< = d(K(p1,p2, . . . , pn)) < = 3 for n > = 3, there are still many ~d(K(p1, p2, . . . , pn)) remain un-determined. In this thesis, we establish some new results. We determine d(G) of some complete 3-partite graphs. Also, we find a family of complete multipartite graphs G with d(G)=2, for n>3. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:48:12Z (GMT). No. of bitstreams: 1 ntu-95-R93221001-1.pdf: 435763 bytes, checksum: 7727ea0a5e56086c759f67d572fce4ec (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract in Chinese ii Abstract in English iii 1 Introduction 1 2 Preliminary 4 3 The value of d(K(p1, p2, p3)) 7 4 Graphs K(p1, . . . , pn) with d(K(p1, . . . , pn)) = 2, for n > = 4 16 References 26 | |
| dc.language.iso | en | |
| dc.subject | 直徑 | zh_TW |
| dc.subject | 賦向 | zh_TW |
| dc.subject | 完全多部圖 | zh_TW |
| dc.subject | complete multipartite graph | en |
| dc.subject | diameter | en |
| dc.subject | orientation | en |
| dc.title | 論賦向完全多部圖之最小直徑 | zh_TW |
| dc.title | On the Minimum Diameter among Orientations of Complete
Multipartite Graphs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉鴻國,廖勝強,顏經和,郭大衛 | |
| dc.subject.keyword | 賦向,完全多部圖,直徑, | zh_TW |
| dc.subject.keyword | diameter,orientation,complete multipartite graph, | en |
| dc.relation.page | 27 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 425.55 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
