請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33863完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄(Ya-Hsuan Liou) | |
| dc.contributor.author | Li-Cheng Kao | en |
| dc.contributor.author | 高立誠 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:47:42Z | - |
| dc.date.available | 2016-07-29 | |
| dc.date.copyright | 2011-07-29 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C., “Photo electrochemical properties of the TiO2-Pt system in aqueous solutions”, Int. J. Hydrogen Energy, 27, 2002, 19-26.
Banerjee, S., Mohapatra, S. K., Das, P. P., and Misra, M., “Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS”, Chem. Mater., 20, 2008, 6784–6791. Chang, C., Lee, Y., “Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells”, Appl. Phys. Lett., 91, 2007, 91-93. Fan, S., Kim, D., Kim, J., Jung, D. W., Kang, S. O., Ko, J., “Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications”, Electrochem. Commun., 11, 2009, 1337-1339. Fujishima, A., Honda, K., “Electrochemical photolysis of water at a semiconductor Electrode”, Nature, 238, 1972, 37-38. Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., Dickey, E. C., “Titanium oxide nanotube arrays prepared by anodic oxidation”., J. Mater. Res., 16, 2001, 3331-3334. Grimes, C. A., “Light, Water, Hydrogen The Solar Generation of Hydrogen by Water Photoelectrolysis” Springer Science + Business Media, New York, 2008 Gratzel, M., “Photoelectrochemical cells”, Nature, 414, 2001, 338-344. Karakitsou, K. E., and Verykios, X. E., “Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage”, J. Phys. Chem., 97, 1993, 1184-1189. Kitano, M., Tsujimaru, K., Anpo, M., “Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts”, Top. Catal., 49, 2008, 4–17. Khan, S., Al-Shahry, M., Ingler Jr., W. B., “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”, Science, 297, 2002, 2243-2245. Kudo, A., “Photocatalyst material for water splitting”, Catalysis Surveys from Asia, 2003, 31-38. Kudo, A., Kato, H., Tsuji, I., “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett., Vol.33, 2004, 1534-1539. Lee, Y., Huang, B., Chien, H., “Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications”, Chem. Mater., 20, 2008, 6903–6905. Lee, Y., and Lo, Y., “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe”, Adv. Funct. Mater., 19, 2009, 604–609. Lin, C., Yu, W., Lu, Y., Chien, S., “Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications”, Chem. Commun., 2008, 6031–6033. Lin, C., Yu, Y., Liou, Y., “Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts”, Appl. Catal., B, 93, 2009, 119–125. Liu, B., and Aydil, E. S., “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells”, J. Am. Chem. Soc., 131, 2009, 3985–3990. Lokhande, C.D., Lee, E., K. Jung, Joo, O., “Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films”, Mater. Chem. Phys., 91, 2005, 200–204. Mizukoshi, Y., Ohtsu, N., Semboshi, S., Masahashi, N., “Visible light responses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodic oxidation”, Appl. Catal., B, 91, 2009, 152–156. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K., and Grimes, C. A., “Enhanced Photocleavage of Water Using Titania Nanotube Arrays”, Nano Lett., Vol. 5, 2005, 191-195. Mor, G. K., Prakasam, H. E., Varghese, O. K., Shankar, K., and Grimes, C. A., “Vertically Oriented Ti-Fe-O Nanotube Array Films: Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis”, Nano Lett., Vol. 7, 2007, 2356-2364. Mor, G. K., Varghese, O. K., Wilke, R. H. T., Sharma, S., Shankar, K., Latempa, T. J., Choi, K., and Grimes, C. A., “p-Type Cu-Ti-O Nanotube Arrays and Their Use in Self-Biased Heterojunction Photoelectrochemical Diodes for Hydrogen Generation”, Nano Lett., Vol. 8, 2008, 1906-1911. Nakamura, R., Tanaka, T., Nakato, Y., “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes”, J. Phys. Chem. B, 108, 2004, 10617-10620. Niitsoo, O., Sarkar, S. K., Pejoux, C., R‥uhle, S., Cahen, D., Hodes, G., “Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells”, J. Photochem. Photobiol., A, 181, 2006, 306–313. Paolo, A., Cufalo G., Addamo, M., Bellardita, M., Campostrini R., Ischia, M., Ceccato, R., Palmisano, L., “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions”, Colloids and Surf., A, 317, 2008, 366-376. Park, J. H., Kim, S., Bard, A. J., “Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting”, Nano Lett., Vol. 6, 2006, 24-28. Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., Murugesan, V., “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst”, Water Res., 38, 2004, 3001–3008. Samuel, V., Muthukumar, P., Gaikwad, S.P., Dhage, S.R., Ravi, V., “Synthesis of mesoporous rutile TiO2”, Mater. Lett. 58, 2004, 2514– 2516. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors”, J. Photochemc. Photobiol., A, 85, 1995, 247-255. Sun, W., Yu, Y., Pan, H., Gao, X., Chen, Q., Peng, L., “CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes”, J. Am. Chem. Soc., 130, 2008, 1124-1125. Suzuki, Y., Ngamsinlapasathian, S., Yoshida, R., Yoshikawa, S., “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J. Chem., 4, 2006, 476-488. Tsuchiya, H., Macak, J. M., Ghicov, A., Taveira, L., Balaur, E., Ghicov, A., Sirotna, L., Schumuki, P., “Self-organized TiO2 nanotubes prepared in ammonium floride containing acetic acid electrolytes”, Electrochem. Commun., 7, 2005, 576-580. Tsuji, I., Kato, H., Kobayashi, H., Kudo, A., “Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures”, J. Am. Chem. Soc., 126, 2004, 13406-13413. Wang, G., Yang, X., Qian, F., Zhang, J. Z., and Li, Y., “Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation”, Nano Lett., Vol.10, 2010, 1088–1092. Wilke, K., and Breuer, H.D., “The infuence of transition metal doping on the physical and photocatalytic properties of titania”, J. Photochem. Photobiol., A, 121, 1999, 49-53. Wu, J. J., and Tseng, C. H., “Photocatalytic properties of nc-Au/ZnO nanorod composites.”, Appl. Catal., B, 66, 2006, 51-57. Xu, C.; Wang, X. D.; Wang, Z. L., “Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies”, J. Am. Chem. Soc., 131, 2009, 5866–5872. Zheng, Q., Zhou, B., Bai, J., Li, L., Jin, Z., Zhang, J., Li, J., Liu, Y., Cai, W., Zhu, X., “Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand”, Adv. Mater., 20, 2008, 1044-1049. Zhao, J., Wang, X., Chen, R., Li, L., “Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid State Commun., 134, 2005, 705- 710. 高濂, 鄭珊, 張青紅, “奈米光觸媒”, 五南出版社,2004,台北。 張立群譯,光清淨革命-活躍的二氧化鈦光觸媒,協志工業叢書印行,台北。 邱怡菁, 「溶凝膠法製備InTaO4 光觸媒在水分解產氫研究」,碩士論文,國立臺灣大學工學院化學工程學研究所,2008。 陳恭世, 「奈米顆粒敏化奈米晶體二氧化鈦之光電效應研究」,碩士論文,國立臺灣大學化學研究所碩士論文,2005。 陳俊吉, 「金屬氧化物半導體在可見光分解水製氫之研究」,碩士論文,國立成功大學化學工程學系,2005。 陳思穎, 「選擇性催化加氫技術還原水中硝酸鹽為氮氣之研究」,碩士論文,國立臺灣大學工學院環境工程學研究所,2009。 郭至剛, 「板鈦礦晶相二氧化鈦之製備、鑑定與光化學應用」,碩士論文,國立臺灣大學理學院化學系,2009。 彭郁華, 「二氧化鈦奈米管氫能源製備系統之設計」,碩士論文,國立臺灣大學工學院材料科學與工程學系暨研究所,2008。 蕭光宏, 「二氧化鈦微結構對染料敏化太陽能電池光電效能的影響」,碩士論文,國立臺灣大學理學院化學系,2008。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33863 | - |
| dc.description.abstract | 在現今這個世代,全球暖化已經變成是一個全球性的議題。乾淨且可再利用的能源對人類來說是一個很重要的議題。光催化分解水製造氫氣生成是一種製造再生能源卻不產生污染的綠色產能方式,藉由研究這種產能方式,設計新式的光催化觸媒材料來改進產氫的效率是相當有意義的。
在本研究中,我們利用水熱法在透明導電FTO玻璃上製備高規則排列的一維二氧化鈦奈米柱陣列,並利用此材料作為水分解製氫反應中的光電極。由於二氧化鈦擁有寬廣的能隙間隔,在轉化太陽光為能量來源是很薄弱的。透過合成硫化鎘和硒化鎘作為量子點敏化二氧化鈦可以有效地延伸其能隙應答區間至可見光的範圍。實驗結果顯示,藉由硫化鎘敏化二氧化鈦奈米柱的改善,其光分解水製氫的效率可以由0.019%增進至2.455%,而硒化鎘的部分則可以由0.019%增進至0.916%。 除此之外,我們利用了基材是透明導電玻璃的特性,設計出雙層的模型,同時可以在一片導電玻璃的兩面分別沈積硫化鎘和硒化鎘兩種量子點來敏化二氧化鈦,此一目的是為了結合兩種不同量子點的特性,以改進光電極在光電化學電池中製氫的效率,和入射單色光子-電子轉化效率。在結合了兩種量子點的雙層模型中,可以有效地提升660 nm波段的光子-電子轉化效率至38.098 %。最後還利用量子點敏化的二氧化鈦進行光催化降解亞甲基藍的試驗,同樣有很好的效果。 | zh_TW |
| dc.description.abstract | Global warming has become a universal topic in these days. The clean and recyclable energy is an important topic for us. Hydrogen generation from photocatalytic water splitting is a green process that ensures generating energy without pollution. Therefore it’s vital to investigate the photoelectrode materials for improving its energy conversion efficiency.
In this study, we fabricate highly ordered one-dimensional titanium oxide nanorod array on fluorine-doped tin oxide substrate by hydrothermal method as photoelectrode materials. Owing to its large band gap, titanium dioxide (TiO2) has been limited by its poor utilization of solar energy. Synthesis of cadmium sulfide (CdS) or cadmium selenide (CdSe) quantum dots as photosensitizer can successfully extended its photoresponse to visible light. The results showed that the photoconversion efficiency (η) of cadmium sulfide quantum dots coating on TiO2 nanorod increased from 0.019 to 2.455%, and the photoconversion efficiency of cadmium selenide quantum dots coating on TiO2 nanorod increased from 0.019 to 0.916%. In addition, due to the transparent substrate, we design a double-sided CdS and CdSe quantum dot cosensitized TiO2 nanorod photoanode for photoelectrochemical (PEC) hydrogen generation. The result also showed improvement for photoconversion efficiency, and incident-photon-to-current-conversion efficiency (IPCE). The double-sided model improves IPCE values to 38.098 % under visible spectrum 660 nm. It also exhibits well photocatalytic activity in the photodegradation of methylene blue under solar simulator illumination. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:47:42Z (GMT). No. of bitstreams: 1 ntu-100-R98224209-1.pdf: 3366918 bytes, checksum: 722c6ec5705d30758799f5a8fb8fae21 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 3 第二章 文獻回顧 4 2-1 二氧化鈦簡介 4 2-2 一維二氧化鈦陣列 7 2-3 光觸媒(二氧化鈦)分解水製氫原理 10 2-3-1 光觸媒分解水機制 10 2-3-2 光電化學電池 17 2-3-3 可見光光觸媒 18 2-3-4 雙層(Double-sided)光觸媒模型 20 第三章 實驗方法及設備 23 3-1 研究架構與內容 23 3-2 光觸媒製備 25 3-2-1 水熱法製備一維二氧化鈦 25 3-2-2 量子點敏化二氧化鈦 26 3-2-3 雙層二氧化鈦模型 27 3-3 特性分析 28 3-3-1 場發射掃描式電子顯微鏡/能量散射光譜儀 28 3-3-2 X-射線繞射光譜 29 3-3-3 紫外光-可見光吸收光譜儀(UV-Visible Spectrophotometer)30 3-4 光電化學裝置與水分解製氫 31 3-4-1 標準測試狀況 31 3-4-2 水分解反應之裝置及光電化學測試 33 3-5 光催化降解亞甲基藍 39 第四章 結果與討論 41 4-1 水熱法製備一維二氧化鈦奈米柱 41 4-1-1 成長溫度 41 4-1-2 鈦源含量 43 4-1-3 成長時間 46 4-2 量子點(Quantum-dot-sensitized)敏化二氧化鈦 53 4-2-1 硫化鎘(CdS) 53 4-2-2 硒化鎘(CdSe) 65 4-3 單面雙層量子點 72 4-4 雙層量子點模型 78 4-4-1 雙層量子點沈積次數 78 4-4-2 導電玻璃厚度 85 4-4-3 受光面 88 4-4-4 入射單色光子-電子轉換效率 90 4-5 亞甲基藍光降解反應 94 第五章 結論與建議 98 5-1 結論 98 5-2 建議 99 第六章 參考文獻 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 水分解製氫 | zh_TW |
| dc.subject | 光催化 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | water splitting | en |
| dc.subject | photocatalytic | en |
| dc.subject | quantum-dot | en |
| dc.subject | titanium dioxide | en |
| dc.title | 量子點敏化二氧化鈦奈米柱陣列應用於太陽光光催化反應 | zh_TW |
| dc.title | Quantum-Dot-Sensitized Titanium Dioxide Nanorod Array Applied to Solar Photocatalytic Reaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林進榮,賈儀平,鄧茂華 | |
| dc.subject.keyword | 二氧化鈦,量子點,光催化,水分解製氫, | zh_TW |
| dc.subject.keyword | titanium dioxide,quantum-dot,photocatalytic,water splitting, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
