請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33860完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Y. F. Chen) | |
| dc.contributor.author | Wei-Jun Chuang | en |
| dc.contributor.author | 莊緯駿 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:47:38Z | - |
| dc.date.available | 2007-07-18 | |
| dc.date.copyright | 2006-07-18 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-10 | |
| dc.identifier.citation | I
1. Y Wang, J Rybczynski, D Z Wang and Z F Ren, Nanotechnology 16, 819 (2005). 2. Sander J. Tans, Alwin R. M. Verschueren and Cees Dekker, Nature 393, 49 (1998). 3. Yi Cui and Charles M. Lieber, Science 291, 851 (2001). 4. Kinneret Keren, Rotem S. Berman, Evgeny Buchstab, Uri Sivan, Erez Braun, Science 302, 1380 (2003). 5. A. M. Fennimore, T. D. Yuzvinsky, Wei-Qiang Han, M. S. Fuhrer, J. Cumings and A. Zettl, Nature 424, 408 (2003). 6. Yue Li, Weiping Cai, Guotao Duan, Fengqiang Sun, Bingqiang Cao, Fang Lu, Materials Letters 59, 276 (2005). 7. Shuo Han, Zhibiao Hao, Jian Wang, and Yi Luo, J. Vac. Sci. Technol. B 23(4), 1585 (2005). 8. J F Galisteo, F Garc´ıa-Santamar´ıa, D Golmayo, B H Ju´arez, C L´opez and E Palacios, J. Opt. A: Pure Appl. Opt. 7, S244 (2005) II 1. (a) D. H. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, London 1988. (b)W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge 1989. (c) R. J. Hunter, Introduction to Modern Colloid Science, Oxford University Press, Oxford 1993. (d) Ordering and Phase Transitions in Colloidal Systems (Eds: A. K. Arora, B. V. R. Tata), VCH, Weinheim1996. 2. Microscopy and Histology Catalog, Polysciences, Warrington, PA 1993-1994. 3. (a) Emulsion Polymerization (Ed: I. Piirma), Academic, New York 1982. (b) Science and Technology of Polymer Colloids Vol. II (Eds: G. W. Poehlein, R. H.) 4. (a) E. Matijevic, Acc. Chem. Res. 14, 22 (1981) (b) Fine Particles (Ed: E. Matijestic), a special issue in MRS Bull. 14(12), 18 (1989) (c) E. Matijestic, Chem. Mater. 5, 412 (1993). (d) E. Matijevic, Langmuir 10, 8 (1994) 5. (a) P. Pieranski, Contemp. Phys. 24, 25 (1983) (b) W. van Megan, I. Snook, Adv. Colloid Interface Sci. 21, 119 (1984) (c) A. P. Gast, W. B. Russel, Phys. Today 1998, December, 24. (d) From Dynamics to Devices: Directed Self-Assembly of Colloidal Materials (Ed: D. G. Grier), a special issue in MRS Bull. 23 (10), 21 (1998) 6. S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, J. Colloid Interface Sci. 144, 538 (1991) 7. Y. Xia, J. Tien, D. Qin, G. M. Whitesides, Langmuir 12, 4033 (1996) 8. (a) D. G. Gier, Nature 393, 621 (1998) (b) C. A. Murray, Nature 385, 203 (1997) (c) A. E. Larsen, D. G. Grier, Nature 385, 230 (1997) 9. (a) B. V. Derjaguin, L. Landau, Acta Physicochim. URSS 14, 633 (1941) (b) E. J. W.Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948). (c) J. Visser, in Surface and Colloid Science 8 (Ed: E. Matijevic), Wiley, NewYork (1976), pp. 3-84. 10. C. A. Murray, D. H. V. Winkle, Phys. Rev. Lett. 58, 1200 (1987) 11. A. T. Skjeltorp, P. Meakin, Nature 335, 424 (1988) 12. (a) N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, Nature 361, 26 (1993) (b) G. Picard, Langmuir 14, 3710 (1998) 13. (a) N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama, Langmuir 8, 3183 (1992) (b) A. S. Dimitrov, K. Nagayama, Langmuir 12, 1303 (1996) (c) O. D. Velev, N. D. Denkov, V. N. Paunov, P. A. Kralchevsky, K. Nagayama, Langmuir 9, 3702 (1993) (d) S. Rakers, L. F. Chi, H. Fuchs, Langmuir 13, 7121 (1997) (e) A. S. Dimitrov, T. Miwa, K. Nagayama, Langmuir 15, 5257 (1999) 14. H. W. Deckman, J. H. Dunsmuir, S. Garoff, J. A. McHenry, D. G. Peiffer, J. Vac. Sci. Technol. B6, 333 (1988) 15. P. Richetti, J. Prost, P. Barois, J. Phys. Chem. 45, L1137 (1984) 16. (a) M. Trau, D. A. Saville, I. A. Aksay, Science 272, 706 (1996) (b) M. Trau, D. A. Saville, I. A. Aksay, Langmuir 13, 6375 (1997) 17. (a) S.-R. Yeh, M. Seul, B. I. Shraiman, Nature, 386, 57 (1997) (b) Y. Solomentsev, M. Bohmer, J. L. Anderson, Langmuir 13, 6058 (1997) 18. M. Giersig, P. Mulvaney, Langmuir 9, 3408 (1993) 19. Alfrey Jr. T, Bradford EB, Vanderhof JW, Oster G., Optical properties of uniform particle-size latexes., J. Optical Soc. Am. 44, 603 (1954) 20. Vanderhoff J W, Bradfod E B, Carrington W K., The transport of water through latex films., J. Polymer Sci. Symp. 41, 155 (1973) 21. Horne RW., The formation of virus crystalline and paracrystalline arrays for electron microscopy and image analysis., Adv. Virus Res. 24, 173 (1979) 22. Harris J R., The negative staining-carbon film procedure: technical considerations and a survey of macromolecular applications., Micron Microscopica Acta 22, 341 (1991) 23. Yoshimura H, Matsumoto M, Endo S, Nagayama K., Two-dimensional crystallization of proteins on mercury., Ultramicroscopy 32, 265 (1990) 24. Nagayama K., Two-dimensional self-assembly of colloids in thin liquid films., Colloids Surfaces A 109, 363 (1996) 25. Hulteen J C, van Duyne R P., Nanosphere lithography-a materials general fabrication process for periodic particle array surfaces., J. Vac. Sci. Technol. A 13, 1553 (1995) 26. Sasaki M, Hane K., Ultrasonically facilitated two-dimensional crystallization of colloid particles., J. Appl. Phys. 80, 5427 (1996) 27. Micheletto R, Fukuda H, Ohtsu M., A simple method for the production of two-dimensional, ordered array of small latex particles. Langmuir 11, 3333 (1995) 28. Denkov N D, Velev O D, Kralchevsky P A, Ivanov I B, Yoshimura H, Nagayama K., Mechanism of formation of two-dimensional crystals from latex particles on substrates., Langmuir 8, 3183 (1992) 29. Denkov N D, Velev O D, Kralchevsky P A, Ivanov I B, Yoshimura H, Nagayama K., Two-dimensional crystallization., Nature 361, 26 (1993) 30. Hisatake, K., Tanaka, S., and Aizawa, Y., Evaporation of water in a vessel. J. Appl. Phys. 73, 7395 (1993) 31. Peiss, C. N. Evaporation of small water drops maintained at constant volume. J. Appl. Phys. 65, 5235 (1989) 32. Jackson, J. D. Classical Electrodynamics 2nd edn, 77 (Wiley, New York, 1975) 33. Yablonovitch E, Gmitter T J and Leung K M, Phys. Rev. Lett. 67, 2295 (1991) 34. Ritchie R H, Phys. Rev. 106, 874 (1957) 35. Stern E A and Ferrell R A, Phys. Rev. 120, 130 (1960) 36. Pendry J B and Martin Moreno L, Phys. Rev. B 50, 5062 (1994) 37. Pines D and Bohm D, Phys. Rev. 85, 338 (1952) 38. Bohm D and Pines D, Phys. Rev. 92, 609 (1953) 39. Anderson P W, Phys. Rev. 130, 439 (1963) 40. J. B. Pendry, Science 285, 1687 (1999). 41. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 54, 11245 (1996). 42. F. J. García-Vidal and J. B. Pendry, Phys. Rev. Lett. 77, 1163 (1996). 43. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, Optics Letters 28, 423 (2003). 44. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, Nature 391, 667 (1998). 45. H. Raether, Surface Plasmons, Springer-Verlag, Berlin, 1988. 46. A. Degiron, H. J. Lezec, W. L. Barns, T. W. Ebbesen, App. Phys. Lett. 81, 4327 (2002). 47. L. Martìn-Moreno, F. J. Garcìa-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114. 48. J. R. Sambles, Nature (London) 391, 641 (1998). 49. H. Räther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988). 50. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001). 51. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999). 52. S. A. Darmanyan and A. V. Zayats, Phys. Rev. B 67, 035424 (2003). 53. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998). 54. U. Schroter and D. Heitmann, Phys. Rev. B 58, 15419 (1998). 55. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, Opt. Lett. 24, 256 (1999). 56. S. Astilean, Ph. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000). 57. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, Phys. Rev. Lett. 86, 1110 (2001). 58. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002). 59. N. Bonod, S. Enoch, L. Li, E. Popov, and M. Neviere, Opt. Express 11, 482 (2003). 60. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, Phys. Rev. B 68, 201306 (2003). 61. W. Wen, Z. Yang, G. Yu, Y. Chen, L. Zhou, W. Ge, and C. T. Chan, Appl. Phys. Lett. 83, 2106 (2003). 62. I. Puscasu, W. L. Schaich, and G. D. Boreman, Appl. Opt. 40, 118 (2001). 63. B. A. Munk, Frequency Selective Surfaces (Wiley, New York, 2000). III 1. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, Langmuir 8, 3183 (1992) 2. Peter A. Kralchevsky and Kuniaki Nagayama, Langmuir 10, 23 (1994) 3. Antony S. Dimitrov, Ceco D. Dushkin, Hideyuki Yoshimura and Kuniaki Nagayama, Langmuir 10, 432 (1994) 4. David H. Van Winkle, C. A. Murray, Phys. Rev. A 34, 562 (1987) 5. R. Micheletto, H. Fukuda, and M. Ohtsu, Langmuir 11, 3333 (1995) 6. Peter A. Kralchevsky, Nikolai D. Denkov, Current Opinion in Colloid & Interface Science 6, 383 (2001) IV 1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 85, 4773 (1996) 2. E. Altewischer, M. P. van Exter and J. P. Woerdman, Nature 418, 304 (2002) 3. H. A. Bethe, Phys. Rev. 66, 163 (1944). 4. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33860 | - |
| dc.description.abstract | 我們提供一個簡單的方法,即利用奈米球微影術與反應性離子蝕刻術來製作大面積金屬孔洞陣列,目前大面積的金孔洞陣列已經成功地製作出來,而且其面積可達1 cm2,這是至目前為止可以利用類似的技術來製作出面積最大的金孔洞陣列結構。由實驗我們已經證明週期金孔洞陣列在紅外光波段有等效的電漿頻率存在,這個現象與Pendry的理論預測可以說是非常吻合的,亦即金屬細線的網狀結構可用來調控電將頻率的位置。除此之外,我們也發現了在遠紅外光波段,光的穿透率會增強,這其中的機制乃是由於金屬的表面電漿子與入射光之間的作用有關,這一連串有關大面積孔洞金屬陣列之光學性質的發現對於光電元件的應用可說是非常的重要。 | zh_TW |
| dc.description.abstract | We present here a very simple technique to produce a large area gold nanohole array with the combination of nanosphere lithography and reactive ion etching. A large domain size of gold nanohole arrays up to about 1 cm2 has been successfully fabricated, which represents the largest reported area using the similar techniques. We show that the fabricated Au hole arrays have effective plasma frequencies at infrared region, which confirms the Pendry’s prediction that metallic wire structures can be used to tune the plasma frequency. In addition, we also found that the optical transmission through periodic structures can be enhanced according to the interaction of surface plasmon and the incident light. The novel properties found here for a large-area of periodic array should be important for the application of optoelectronic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:47:38Z (GMT). No. of bitstreams: 1 ntu-95-R92222048-1.pdf: 5772561 bytes, checksum: d3c947573056578a038e2446a1a83487 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | I.Introduction.............................................1
II.Background knowledge....................................4 2.1 Introduction of colloidal particles.................4 2.1.1 Application of the colloidal particles.........4 2.1.2 Commercial sources for monodispersed colloidal spheres....................................................7 2.1.3 Interactions between colloidal spheres suspended in liquids.......................................8 2.1.4 Method of 2D arrays colloidal spheres formation.................................................10 2.2 Introduction and applications of the nanosphere lithography process..................................14 2.3 Self-assembly of particles under the action of capillary forces..........................................16 2.4 Low frequency plasmons in thin-wire structures.....20 2.5 Transmission enhancement through sub-wavelength hole arrays....................................................23 III.Experiment............................................30 3.1 Introduction of the experimental instruments.......30 3.2 Scanning electron microscopy.......................37 3.3 Sample fabrication.................................41 3.4 Fourier-Transform Infrared Spectroscopy........... 49 3.4.1 History.......................................49 3.4.2 Instrumentation...............................51 IV.Results and discussion of optical characterization.....55 V.Conclusion..............................................59 | |
| dc.language.iso | en | |
| dc.subject | 金孔洞陣列 | zh_TW |
| dc.subject | 反應性離子蝕刻技術 | zh_TW |
| dc.subject | 奈米顆粒球微影術 | zh_TW |
| dc.subject | nanohole array | en |
| dc.subject | nanosphere lithography | en |
| dc.subject | reactive ion etching | en |
| dc.title | 利用奈米顆粒球微影術及反應性離子蝕刻技術製作大面積金孔洞陣列與其光學性質之研究 | zh_TW |
| dc.title | Fabrication and optical studies of large area gold nanohole array by the combination of nanosphere lithography and reactive ion etching | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鶯聲(Y. S. Huang),梁啟德(C. T. Liang) | |
| dc.subject.keyword | 奈米顆粒球微影術,反應性離子蝕刻技術,金孔洞陣列, | zh_TW |
| dc.subject.keyword | nanohole array,nanosphere lithography,reactive ion etching, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 5.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
