請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳尊賢(Zueng-Sang Chen) | |
| dc.contributor.author | Shih-Hao Jien | en |
| dc.contributor.author | 簡士濠 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:47:14Z | - |
| dc.date.available | 2009-07-19 | |
| dc.date.copyright | 2006-07-19 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-10 | |
| dc.identifier.citation | 何春蓀。1994。台灣地質概論 – 台灣第質圖說明書 (第二版第二刷)。經濟部中央地質調查所,台北,163頁。
林朝棨。1963。台灣之第四紀。台灣文獻 14: 83-126。 洪崑煌。1983。水田土壤Eh值之測定。中國農業化學會誌 21:171-177。 許正一、陳尊賢。1994。地下水位變動與土壤氧化還原形特徵之關係。土壤肥料通訊 42: 21-35。中華土壤肥料學會出版。 許正一。1997。浸水狀況下土壤飽和狀態氧化還原過程與氧化還原形態特徵的關係以中壢台地為例。國立台灣大學農業化學研究所博士論文,269頁。 陳春泉。1976。桃園縣土壤調查報告。台灣省農業試驗所報告第三十三號,台中,112頁。 陳尊賢、張仲民。1985。排水良好水田土壤中游離鐵氧化物組成、分佈及其化育特徵之探討。國立台灣大學農學院研究報告 25:22-39。 陳尊賢、陳振鐸、張仲民、千田勝己。1978。台灣重要土類之水稻田土壤中黏土礦物組成分與土壤氮之無機化作用對水稻發育之關係。中國農業化學會誌16:143-160。 陳尊賢。1984。台灣水田土壤調查與分類之今後模式—桃園濱海地區水田土壤之生成化育與分類之研究。國立台灣大學農業化學研究所博士論文,357頁。 Blake, G. R., and K. H. Hartge. 1986. Bulk density. p. 363-375. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Blume, H. P., E. Schlichting. 1985. Morphology of wetland soils. p. 161-176. In Wetland soils: Characterization, classification, and utilization. Proc. IRRI Workshop, Los Banos, Laguna, Philippines. 26 Mar.-5 Apr. 1984. IRRI, U.S. AID, Bur. Soils, Philippine Minis. Agric., Los Banos, Laguna, Philippines. Boersma, L., and G. H. Simonson, and D. G. Watts. 1972. Soil morphology and water table relations: I. Annual water table fluctuations. Soil Sci. Soc. Am. Proc. 35:644-653. Boullock, P. N., Fedoroff, A. Jongerius, G. Stoops, and T. Tursina. 1985. Handbook for Soil Thin Section Description. Waine Reserch Publications, Wolverhampton, U. K., 152pp. Brewer, R. 1964. Fabric and mineral analysis of soils. J. Wiley &Sons, New York, 470pp. Brinkmann, R., A. J. Jongmans, R. Miedema, and P. Maaskant. 1973. Clay decomposition in seasonally wet, acid soils: Micromorphological, chemical and mineralogical evidence from individual argillans. Geoderma 10:259-270. Bryant, R. B., J. G. Galbraith, and J. Russell-Anelli. 1998. Defining classes for anthropogenic soils in soil taxonomy. In J. M. Kimble, R. L. Ahrens, and R. B. Bryant (ed.). Proceeding of classification, correlation, and management of anthropogenic soils, Nevada and California. 21 Sep.-2 Oct. 1998. National Soil Survey Center, Lincoln, NE, USA. Cady, J. G., L. P. Wilding, and L. R. Drees. 1986. Petrographic microscope techniques. p. 185-218. In Klute (ed). Methods of soil analysis, Part 1. 2nd. Agron. Monogr. 9. Madison, WI. Calmon, M. A., R. L. Day, E. J. Ciolkose, and G. W. Petersen. 1998. Soil morphology as an indicator of soil hydrology on a hillslope underlain by a fragipan. p. 129-150. In Rabenhorst, M. C., J. C. Bell, and J. L. Richardson (ed.), Quantifying Soil Hydromorphology. Soil Science Society of America, Inc., Madison. Carlan, W. L., H. F. Perkins, and R. A. Leonard. 1983. Movement of water in Plinthic paleudult using a bromide tracer. Soil Sci. 139:62-66. Chen, Z. S. 1992. Morphological characteristics, pedogenic process, and classification of wet soils in Taiwan. p. 53-59. In J. M. Kimble (ed.). Proceeding of the Eighth International Soil Correlation Meeting 8th (VIII ISCOM): Characterization, classification, and utilization of wet soils, Louisiana and Texas. 6-21 Oct. 1990. National Soil Survey Center, Lincoln, NE, USA. Childs, C. W., and B. Clayden. 1986. On the definition and identification of aquic soil moisture regimes. Clausnitzer, D., J. H. Huddleston, E. Horn, M. Keller, and C. Leet. 2003. Hydric soils in a southeastern Oregon vernal pool. Soil Sci. Soc. Am. J. 67:951-960. Clothier, B. E., J. A. Pullok, and D. R. Scotter. 1978. Mottling in soil profiles containing a coarse- textured horizon. Soil Sci. Soc. Am. J. 42:761-763. Crompton, E. 1952. Some morphological features associated with poor soil drainage. J. Soil Sci. 3:277-289. D’Amore, D. V., S. R. Stewart, and J. H. Huddleston. 2004. Saturation, reduction, and formation of iron-manganese concretions in the Jackson-Frazier wetland, Oregon. Soil Sci. Soc. Am. J. 68:1012-1022. Daniels, R. B., E. E. Gamble, and L. A. Nelson.1971. Relations between soil morphology and water-table levels on a dissected North Carolina Coastal Plain surface. Soil Sci. Soc. Am. Proc. 35:781-784. Daniels, R. B., E. E. Gamble, and S. W. Boul. 1973. Oxygen content in the groundwater of some north Carolina aquults and udults. p. 153-156. In R. R. Bruce et al. (ed.) Field soil water regime. SSSA Spec. Publ. 5. SSSA, Madison, WI. Soil Sci. Soc. Am. Proc. 42:944-949. Daniels, R. B., H.F. Perkins, B. F. Hajek, and E. E. Gamble. 1978. Morphology of discontinuous phase plinthite and criteria for its field identification in the southeastern United State. Daugherty, L. A., and R. W. Arnold. 1982. Mineralogy and iron characterization of plinthitic soils on alluvial landform in Venezuela. Soil Sci. Soc. Am. J. 46:1244-1252. Duiker, S. W., F. E. Rhoton, J. Torrent, N. E. Smeck, and R. Lal. 2003. Iron (hydr)oxide crystallinity effects on soils aggregation. Soil Sci. Soc. Am. J. 67:606-611. Evans, C. V., and D. P. Franzmeier. 1988. Color index values to represent wetness and aretion in some Indiana soils. Geoderma 41:353-368. Fanning, D. S., and M. C. B. Fanning. 1989. Gleization. pp. 110-125. Soil: Morphology, genesis, and classification. John Wiley & Sons, Inc. New York. Faulkner, S. P., and W. H. Patrick, Jr. 1992. Redox processes and diagnostic wetland soil indicators in bottomland hardwood forests. Soil Sci. Soc. Am. J. 56:856-865. Franzmeier, D. P., J. E. Yahner, G. C. Steinhart, and H. R. Sinclair. 1983. Color patterns and water table levels in some Indiana soils. Soil Sci. Soc. Am. J. 47:1196-1202. Galusky, L. P., M. C. Rabenhorst, and R. L. Hill. 1998. Toward the development of quantitative soil morphological indicators of water table behavior. p. 77-93. In Rabenhorst, M. C., J. C. Bell, and J. L. Richardson (ed.), Quantifying Soil Hydromorphology. Soil Science Society of America, Inc., Madison. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. p. 383-411. In A. Klute (ed). Methods of Soil Analysis, Part 1. 2 nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Genthner, M. H., W. L. Daniels, R. L. Hodges, and P. J. Thomas. 1998. Redoximorphic features and seasonal water table relations, upper coastal plain, Virginia. p. 43-60. In Rabenhorst, M. C., J. C. Bell, and J. L. Richardson (ed.), Quantifying Soil Hydromorphology. Soil Science Society of America, Inc., Madison, Wisconsin, USA. Gile, L. H. 1958. Fragipan and water table relationships of some brown podozolic an dlow humic-gley soils. Soil Sci. Soc. Am. Proc. 22:560-565. Gobin, A., P. Campling, J. Deckers, and J. Feyen. 2000. Quantifying soil morphology in tropical environments: methods and application in soil classification. Soil Sci. Soc. Am. J. 64:1423-1433. Guthrie, R. L., and B. F. Hajek. 1978. Morphology and water regime of a Dothan soils. Soil Sci. Soc. Am. J. 43:142-144. He, X., M. J. Vepraskas, D. L. Lindbo, and R. W. Skaggs. 2003. A method to predict soil saturation frequency and duration from soil color. Soil Sci. Soc. Am. J. 67:961-969. Hseu, Z. Y. and Z. S. Chen. 1995. Redox process of rice-growing Alfisoils with different wet conditions. J. Chinese Agri. Chem. Soc. 33:333-344. Hseu, Z. Y. and Z. S. Chen. 1996. Saturation, reduction, and redox morphology of seasonally flooded Alfisols in Taiwan. Soil Sci. Soc. Am. J. 60:941-949. Hseu, Z.Y., and Z.S. Chen 2001. Quantifying soil hydromorphology of a rice-growing Ultisol toposequence in Taiwan. Soil Sci. Soc. Am. J. 65: 270-278. Hundell, W. H., and L. P. Wilding. 1992. Monitoring soil wetness conditions in Louisiana and Texas. p. 135-147. In J. M. Kimble (ed.) Proceeding of the Eighth International Soil Correlation Meeting 8th (VIII ISCOM): Characterization, classification, and utilization of wet soils, Louisiana and Texas. 6-21 Oct. 1990. National Soil Survey Center, Lincoln, NE, USA. Hurt, G. W., P. M. Whited, and R. F. Pringle (ed.) 1998. Field indicators of hydric soils in the United States. A guild for identifying and delineation hydric soils (version 4.0), prepared in cooperation with the National Technical Committee for Hydric Soils. USDA-NRCS, Fort Worth, TX. Jien, S. H., Z. Y. Hseu, and Z. S. Chen. 2004. Relations between morphological color index and soil wetness condition of anthraquic soils in Taiwan. Soil Sci. 169:871-882. Jocobs, P. M., L. T. West, and J. N. Shaw. 2002. Redoximorphic features as indicators of seasonal saturation, Lowndes County, Georgia. Soil Sci. Soc. Am. J. 66:315-323. Karathanasis, A. D., Y. L. Thompson, and C. D. Barton. 2003. Long-term evalutions of seasonally saturated wetlands in western Kentucky. Soil Sci. Soc. Am. J. 67:662-673. Khormali, F., A. Abtahi, S. Mahmoodi, and G. stoops. 2003. Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena. 53:273-301. Klute, A., and C. Dirksen. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. p. 687-734. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Lattrille, C., F. Elsass, F. Oort, and L. Denaix. 2001. Physical speciation of trace metals in Fe-Mn concretion from a rendzic lithisol developed on Sinemurian limestones (France). Geoderma. 100:127-146. Lynn. W., and W. Austin. 1998. Oxymorphic manganese (iron) segregations in a wet soil catena in the Willamette valley, Oregon. p. 209-226. In Rabenhorst, M. C., J. C. Bell, and J. L. Richardson (ed.), Quantifying Soil Hydromorphology. Soil Science Society of America, Inc., Madison. Magaldi, D., and M. Tallini. 2000. A micromorphological index of soil development for the Quaternary geology research. Catena 41:261-276. McKeague, J. A., and J. H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45:49-62. McLean, E. O. 1982. Soil pH and lime requirement. p. 199-224 In A. L. Page et al. (ed). Methods of Soil Analysis, Part 2. 2 nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Mcqueen, J. 1967. Some methods for clas-sifi-cation and analysis of multivariate observations. p. 281–297. In Proceedings of the 5th Berkeley Symposium on Mathe-matical Statistics and Probability. Megonigal, J. P., W. H. Patrick, Jr., and S. P. Faulkner. 1993. Wetland identification in seasonally flooded forest soils: soil morphology and redox dynamics. Soil Sci. Soc. Am. J. 57:140-149. Mehra, O. P. and M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite- citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317-327. Miedema, R. 1997. Applications of micromorphology of relevance to agronomy. Adv. Agron. 59:119-169. Mokma, D. L., and D. L. Cremeens. 1991. Relationships of saturation and B horizon colour patterns in soils of three hydrosequences in south-central Michigan, USA. Soil Use Manag. 7:56-61. Moore, T. R. 1974. Gley morphology and soil water regime in some soils in south-central England. Geoderma 11:297-304. Nelson, D. W., and L. E. Sommer. 1982. Total carbon , organic carbon, and organic matter. p. 539-577. In A. L. Page et al. (ed). Methods of Soil Analysis, Part 2. 2 nd ed. Monogr. 9. ASA and SSSA, Madison, WI. Ojanuga, A. G. and G. B. Lee. 1973. Characteristics, distribution, and genesis of nodules and concretions in soils of the southwestern upland of Nigeria. Soil sci. 116:282-291. Pickering, E. W., and P. L. M. Veneman. 1984. Moisture regimes an morphological characteristics in a hydrosequencec in central Massachusetts. Soil Sci. Soc. Am. J. 45:113-118. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29-96. Rabenhorst, M. C. 2004. Pedogenesis of Hydric soils-Hydropedology. p. 21-36. In L. M. Vasias, and B. L. Vasilas (eds.). A Guide to Hydric Soils in the Mid-Atlantic Region. Version 1.0. USDA, NRCS, Morgantown. Ransom, M. D., N. E. Smeck, and J. M. Bigham. 1987. Micromorphology of seasonally wet soils on the Illinoisan till plain, U. S. A. Geoderma 40:83-100. Reuter, R. J., and J. C. Bell. 2003. Hillslope hydrology and soil morphology for a wetland basin in south-central Minnesota. Soil Sci. Soc. Am. J. 67:365-372. Richardson, J. L. and F. D. Hole. 1979. Mottling and iron distribution in a glossoboralf-haplaquoll hydrosequence on a glacial moraine in northwestern Wisconsin. Soil Sci. Soc. Am. J. 43:552-558. Sanz, A., M. T. Garcia-González, C. Vizcayno and R. Rodriguez. 1996. Iron-manganese nodules in a semi- arid environment. Aust. J. Soil Res. 34:623-634. Schwertmann, U. 1993. Relations between iron oxides, soil color, and soil formation. p. 51-69. In J. M. Bigham and E. J. Ciolkosz (ed). Soil color. SSSA Spec. Publ. 31. SSSA. Madison, WI. Schwertmann, U., and D. S. Fanning. 1976. Iron-manganese concretions in ghydrosequences of soils in loess in Bavaria. Soil Sci.Soc. Am. J. 40:731-738. Schwertmann, U., and R. M. Taylor. 1989. Iron oxides. p. 379-438. In J. B. Dixon and S. B. Weed (ed.) minerals in soil environmental. Second Edition. Soil Sci. Soc. Am. Book series no.1, Soil Sci. Soc. Am. Madison, WI, USA. Seybold, C. A., W. Mersie, J. Huang, and C. McNamee. 2002. Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland. Wetlands 22:149-158. Simonson, G. H., and L. Boersma. 1972. Soil morphology and water table relations. Ⅱ. Correlation between annual water fluctuations and profile features. Soil Sci. So. Am. Proc. 36:649-653. Soil Survey Staff. 1993. Soil survey manual. USDA Agric. Handb. 18. U. S. Gov. Print. Office, Washington, DC. Soil Survey Staff. 1998. Field book for describing and sampling soils. Version 1. USDA-NRCS, Linvoln, Nebraska. Soil Survey Staff. 1999. Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA-NRCS, Agricultural Handbook No. 436, 2nd ed., U.S. Gov. Print. Office, Washington, D.C. Soil Survey Staff. 2003. Key to Soil Taxonomy.9th edition. USDA-NRCS, Washington, D.C. Soil Survey Staff. 2006. Key to Soil Taxonomy.10th edition. USDA-NRCS, Washington, D.C. Soil Survey Staff. 2002. Field book for describing and sampling soils. Version 2. USDA-NRCS, Linvoln, Nebraska. Sophie C., V. Deschatrettes, S. Salvador-Blanes, B. Clozel, M. Hardy, S. Branchut, L. Forestier. 2005. Trace element accumulation in Mn-Fe-oxide nodules of a planosolic horizon. Geoderma. 125:11-24. Stolt, M. H., C. M. Ogg, and J. C. Baker. 1994. Strong contrasting redoximorphic patterns in Virginia valley and ridge Paleosols. Soil Sci. Soc. Am. J. 58:477-484. Stolt, M. H., M. H. Genthner, W. L. Daniels, V. A. Groover, S. T. Nagle, and K. C. Haering. 2000. Comparison of soil and other environmental conditions in constructed and adjacent palustrine reference wetlands. Wetlands 20:671-683. Stoops, G. 2003. Guildlines for analysis and description of soil and regolith thin section. Soil Science Society of America, Inc., Madison, Wisconsin, USA. Stoops, G., and H. Eswaran. 1985. Morphological characteristics of wet soils. In Wetland soils: characterization, classification, and utilization. IRRI, Los Banos, Philippines, pp. 179-189. Tassinari, C., P. Lagacherie, R. Bouzigues, and J. P. Legros. 2002. Estimating soil water saturation from soil morphological soil indicators in a pedologically contrasted Mediterranean region. Geoderma 108:225-235. Terribile, F., R. Wright, and E. A. Fitzpatrick. 1997. Image analysis in soil micromorphology: from univariate approach to multivariate solution. In S. Shoba, M. Gerasimova, and R. Miedema (eds) Soil Micromorphology: Studies on Soil Diversity Diagnostics Dynamics. Priting Service Centre Van Gils, Wageningen. 397-417. Thompson, J. A., and J. C. Bell. 1996. Color index for identifying hydric conditions for seasonally saturated Mollisols in Minnesota. Soil Sci. Soc. Am. J. 60: 1979-1988. Torrent, J., H. F. Schwertmann, and F. Alferez. 1983. Quantitative relationships between soil color and hematite content. Soil Sci. 136:354-358. USDA-NRCS. 2006. Field Indicators of Hydric Soils in the United States. Version 6.0. Hurt, G. W., P. M. Whited, and R. F. Pringle (eds.). USDA-NRCS, Ft. Worth, TX, USA. Veneman, P. L. M., J. Vepraskas, and J. Bouma. 1976. The physical significance of soil mottling in a Wisconsin toposequence. Geoderma 15:103-118. Veneman, P. L., M. L. A. Spokas, and D. L. Lindbo. 1998. Soil moisture and redoximorphic features: a historical perspective. In Rabenhorst, M. C., J. C. Bell, and J. L. Richardson (ed.), Quantifying Soil Hydromorphology. Soil Science Society of America, Inc., Madison. Vepraskas, M. J., and J. Bouma. 1976. Model experiments on mottle formation simulating field conditions. Geoderma 15:217-230. Vepraskas, M. J., and L. P. Wilding. 1983a. Aquic moisture regimes in soils with and without low chroma colors. Soil Sci. Soc. Am. J. 47:280-285. Vepraskas, M. J., and L. P. Wilding. 1983b. Albic neoskeletans in argillic horizons as indices of seasonal saturation and iron reduction. Soil Sci. Soc. Am. J. 47:1200-1208. Vepraskas, M. J., and W. R. Guertal. 1992. Morphological indicators of soil wetness. p. 307-312. In J. M. Kimble (ed.) Proceeding of the Eighth International Soil Correlation Meeting 8th (VIII ISCOM): Characterization, classification, and utilization of wet soils, Louisiana and Texas. 6-21 Oct. 1990. National Soil Survey Center, Lincoln, NE, USA. Vepraskas, M. J., L. P. Wilding, and L. R. Dress. 1994. Aquic conditions for soil Taxonomy: concepts, soil morphology and micromorphology. p. 117-140. In Soil Micromorphology: Studies in Management and Genesis-Proc. IX Int. Working Meeting on Soil Micromorphology. Ringrose-Voase A. J. and Humphreys G. S. (eds). Townsvile, Australia, July 1992. Developments in Soil Science 22, Elsevier, Amsterdam. Vepraskas, M. J., X. He, D. L. Lindbo, and R. W. Skaggs. 2004. Calibrating hydric soil field indicators to long-term wetland hydrology. Soil Sci. Soc. Am. J. 68:1461-1469. White, G. N., and J. B. Dixon. 1996. Iron and manganese distribution in nodules from a young Texas Vertisol. Soil Sci. Soc. Am. J. 60:1254-1262. Wood, B. W., and H. F. Perkins. 1976. Plinthite characterization in selected southern coastal plain soils. Soil Sci. Soc. Am. Proc. 40:143-146. Zang, M., and A. D. Karathanasis. 1994. Formation and distribution of Fe-Mn concretions in some Alfisols from thr inner bluegrass region of Kentucky. p. 346. In Agronomy abstracts, 1994. annual Meeting of ASA, CSSA, and SSSA, 13-18 Nov., 1994. Seattle, Washington. Zobeck, T. M., and A. Ritchie, Jr. 1984. Analysis of long-term water table depth records from a hydrosequence of soil in central Ohio. Soil Sci. Soc. Am. J. 48:119-125. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33842 | - |
| dc.description.abstract | 鐵錳聚積物 (例如鐵錳軟團塊、鐵錳結核)於含鐵網紋 (plinthite)極育土中為一明顯的形態特徵。鐵錳聚積物的生成與水文狀況關係密切,諸如季節性地下水位的變動或表面灌溉水的灌排都將影響土壤中元素的重新分佈或氧化還原形態特徵上的變化。本研究在桃園中壢臺地上,針對不同水分境況且不同形態特徵之土壤,探討其氧化還原形態特徵之鑑定方法及鐵錳結核生成與當地水文狀況之關係並且推論鐵錳結核生成機制。
本研究選定桃園中壢臺地上之三種不同水分境況土壤,分別為湖口土系 (Plithic Paleaquults),竹圍土系 (Typic Plinthaquults)和蘆竹土系 (Typic Plinthaquults)。分別於三種土壤之表面下25、50、100及200公分處於2004年1月至2005年12月每兩星期土壤水分基質勢能、土壤氧化還原電位,及另設置一200公分監測井以觀察地下水位變化。將10×10公分之鋁製方盒於每土層中收集土樣,攜回實驗室後以濕篩方式收集不同粒徑大小之鐵錳結核,收集之粒徑分別為2-5, 5-10, 10-20和>20 mm。 研究結果發現處於地勢較低的湖口土系,常年季節性地下水位為三土系中最高,長年於Bt1層(20-40 cm)處變動。此深度附近由於乾濕交替頻繁,導致整個剖面中之鐵錳結核含量於Bt1和Bt2 (20-60 cm)處最多 (9-33 kg/55cm/m2) (20公分至75公分間)。湖口土系為三土系中還原時間最久之土系,表土50公分以下之平均還原時間為一年之74%,總結核含量為約9 kg/150cm/m2 (50-200公分),為三剖面中之最少量。原因為土壤長期處於還原狀況下,導致鐵錳結核不易生成。竹圍土系為三種土壤中總鐵錳結核含量最多之剖面 (表土50至200公分總量約740 kg/150cm/m2)。由於此剖面地下水位變動頻繁,長年於50-180公分間變動,且表土50公分下之平均還原時間為一年之40-50%,總鐵錳結核含量為740 kg/150cm/m2 ((50-200公分))。由此結果推測中等還原狀況和頻繁地下水位變動乃是造成鐵錳結核形成的主要因子。蘆竹土系排水等級較其餘兩土系較佳,但受暫棲水和地下水位變動的雙重影響,在Btv1 (20-50 cm)層內,氧化還原作用盛行,鐵錳結核含量稍多 (22-53 g/kg)且粒徑較大,以10-20mm的結核為主。剖面愈往下層部分,雖長期浸水飽和但卻未達還原狀況,應該為地下水含氧的關係,使得還原狀態不盛行,導致鐵錳分凝作用不佳,鐵錳結核不易生成。此土系表土50公分下鐵錳結核總量只達 220 kg/150cm/m2 (50-200公分)。 由無定形、游離態和全量鐵和錳分析可判定鐵錳結核之結晶化程度及鐵活性指標。結晶程度可由結晶化指數 ((Fed-Feo)/Fed)比較得知,研究結果發現,三剖面中各不同粒徑下之鐵錳結核結晶化程度與土壤一年中還原時間具有顯著之負相關 (r=-0.30*, p<0.05),顯示當土層處於還原狀況愈久時,現地所形成之結核結晶程度越差。另一方面,鐵活度指標 (Feo/Fed)與土壤還原時間具顯著正相關 (r=0.43**, p<0.01),結果表示,當鐵錳結核粒徑越大時,Feo/Fed有較大的趨勢。此現象可解釋鐵錳結核為現地生成,由小粒徑之鐵錳結核為核心並逐漸而增大。由微形態方面之觀察,結果可證實大部分結核確實為現地生成 (邊界漸往外擴散),且大部分之結核皆為以錳為核心。由此現象,可推測當土層處還原狀態一段時間後,錳還原而往下淋洗至孔洞或石英等不易風化之礦物上,待氧化而後沉澱,接續還原的鐵或錳再逐漸洗入原先沉澱的錳核裂隙中或沉澱並包覆於表面上逐漸增大。 本研究推論在含鐵網紋之極育土中的鐵錳結核生成機制有三個步驟:(1) 受還原的錳先移動至土壤微孔隙中或不易風化之礦物表面上沉澱形成結晶性不佳之錳核;(2) 接續由於地下水位變動或表面灌溉水之淋洗,導致還原的鐵隨黏粒或獨自洗入移動至一開始之錳核表面或裂隙中再氧化而沉澱;(3) 長久乾溼交替的水文變動,鐵錳結核逐漸氧化累積增大。 | zh_TW |
| dc.description.abstract | Iron and manganese nodules are dominant redoximorphic features in most of rice growing soils of Taiwan that are characterized by the effects of variability in anthraquic and seasonally fluctuating of shallow ground water tables. A field experiment was conducted in Chungli terrace from January of 2004 to December of 2005 to characterize the chemical and physical properties of Fe-Mn nodules and to examine the possible mechanisms for nodule formation under different moisture regimes. It was found that the quantities and characteristics of these nodules were to a greater extent influenced by fluctuating soil moisture regime. The objectives of this study are(1) to characterize the chemical and physical properties of Fe-Mn nodules, and (2) to propose possible mechanisms for nodule formation under different regimes of soil water conditions
Three Ultisols with Fe-Mn rich nodules and different moisture regime were selected in Chungli rice growing terrace located in the northern Taiwan. The selected soils were Typic Plinthaquult (Luchu soil), Typic Plinthaquult (Chuwei soil) and Plinthic Paleaquult (Houko soil) within an elevation of 20 to 30m above sea level. Routine soil sampling and analyses included variables such as the measurements of ground water table, soil matric potential and soil redox potential (Eh) which were than combined with the measurements of physical and chemical characteristics of whole soils and Fe-Mn nodules with different sizes to understand the formation mechanism of the redoximorphic features in these anthraquic soils with plinthite. It was observed that the soil pedon (below 50 cm depth in the profile) in Plinthic Paleaquult (Houko soil) located at the bottom of the hydrosequence was most reduced (70% of the year) compared with other soils in the hydrosequence. The highest reduction at 50 cm depth in Houko soil was found to be associated with the slightly development of Fe-Mn nodules (9 kg/150 cm/m2). The Chuwei soil had moderately reduced pedon (40% of the year) but was found to be associated with the highest development of Fe-Mn nodules (740 kg/150 cm/m2). Based on these observations, it was assumed that moderately reduced duration was the most suitable condition for the formation of Fe-Mn nodules along this toposequence. Iron and manganese nodules of four sizes (2-5, 5-10, 10-20, and >20mm radius) were also determined to study their formation under different water regime conditions. These nodule samples were analyzed for amorphous material (Feo, Mno, and Alo), crystalline material (Fed, Mnd, and Ald), and total content (Fet and Mnt) of Fe, Mn and Al. The results indicated that Fed and Fet decreased with increasing sizes of the nodules. No trend was found in any fraction of Mn of three pedons for Mno, Mnd and Mnt. The crystalline index ((Fed-Feo)/Fed) of different size nodules ranged from 0.5 to 1. A significantly negative correlation was observed between the crystalline index and the duration of reduced time in a year (r=0.30*, p<0.05). It indicated that the degree of crystalline of nodules decreased with length of reduced duration. Nodules of different sizes had similar Fe activity index (Feo/Fed). It showed a trend such that Feo/Fed ratio slightly increased with the nodule sizes, and the largest nodule (> 20 mm) had significantly lower bulk density compared with other nodule sizes. These evidences implied that the poor crystalline iron nodules are still accruing which could be explained by the occurrences of nodules of varying sizes as a nucleus. The micromorphological features of Fe-Mn nodules with different sizes and water regimes were also studied. These features indicated that the most nodules are formed in-situ with diffuse boundary. The Ap horizon of Luchu soil, as well as soils in Ap and AB horizons of Chuwei soils that were mostly in reduced condition had maximum amount of Mn nodules of different sizes . In these horizons, it appears that reduced Mn would have been moved and precipitated on the surface of the coarse minerals such as quartz, and then reduced Fe and Mn continuously precipitated on their surface or over time infilled into the minerals and grew to the larger ones. On the other hand, concentric nodules (always smaller than 0.5 mm) presenting only in the Luchu soil could be attributed to the dominant role of the finer soil texture (i.e., clay loam). Relatively fewer, smaller and poorer structures of nodules observed in Houko pedon might be because of long-term reduced condition and higher content of organic matter. Based on the results of this study as above, it appears that Fe and Mn nodules formation in these Ultisols with plinthite of Chungli of northern Taiwan have undergone changes through three stages of development: (1) in the initial stage of nodule formation, reduced Mn moved to mineral surfaces and then re-oxidized to poor crystalline Mn oxide form; (2) Fe or Mn continued depositing on or infilling into the Mn nodules and these deposits or infillings of Fe were developed to a recognizable crystalline Fe forms; and (3) depending on the redox condition of the profile over time, these particles continued growing, more of the small nodules were added and poorly crystalline Fe formed into the bigger volumes of Fe-Mn nodules. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:47:14Z (GMT). No. of bitstreams: 1 ntu-95-D90623401-1.pdf: 2426668 bytes, checksum: 63c211b7911292790989ca7d1a18f4ff (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄
頁碼 中文摘要----------------------------------------------------------------------------------- I 英文摘要----------------------------------------------------------------------------------- IV 目錄----------------------------------------------------------------------------------------- VII 圖目錄-------------------------------------------------------------------------------------- IX 表目錄-------------------------------------------------------------------------------------- X 第一章、前言----------------------------------------------------------------------------- 1 第二章、文獻回顧----------------------------------------------------------------------- 5 第一節、不同水文狀況下氧化還原特徵之生成----------------------------- 5 1. 浸水狀況------------------------------------------------------------------------ 5 1.1 內浸水狀況--------------------------------------------------------------- 6 1.2 表面浸水狀況------------------------------------------------------------ 6 1.3 人為浸水狀況------------------------------------------------------------ 8 2. 濕潤境況------------------------------------------------------------------------ 9 3. 暫乾境況------------------------------------------------------------------------ 15 4. 土壤形態特徵之量化與水分境況之關係--------------------------------- 16 5. 水成土壤指標之判定--------------------------------------------------------- 20 6. 影像分析技術對氧化還原形態特徵的衝擊------------------------------ 22 第二節、鐵錳元素在週期性浸水土壤環境中之動向----------------------- 23 第三節、鐵錳結核在週期性浸水土壤環境中之生成----------------------- 24 第四節、浸水土壤中鐵錳結核的微形態特徵與生成作用----------------- 26 第三章、材料與方法-------------------------------------------------------------------- 30 1. 研究區域之選定---------------------------------------------------------- 30 2. 研究區域之地質與地理概況------------------------------------------- 30 3. 研究區域之水文條件及氣候概況------------------------------------- 31 4. 代表性土系之選擇------------------------------------------------------- 35 5. 研究區域之土地利用---------------------------------------------------- 36 6. 田間監測項目------------------------------------------------------------- 36 7. 形態特徵描述------------------------------------------------------------- 40 8. 氧化還原形態特徵量化------------------------------------------------- 41 9. 顏色指標模式選定------------------------------------------------------- 44 10. 土壤基本性質分析------------------------------------------------------ 44 11. 土壤微形態觀察--------------------------------------------------------- 46 12. 鐵錳結核物理化學分析------------------------------------------------ 47 第四章、結果----------------------------------------------------------------------------- 50 第一節、土壤剖面形態特徵----------------------------------------------------- 50 1. 野外形態特徵-------------------------------------------------------------- 50 (1)湖口土系--------------------------------------------------------------- 50 (2)竹圍土系--------------------------------------------------------------- 55 (3)蘆竹土系--------------------------------------------------------------- 57 第二節、土壤基本物理性質分析----------------------------------------------- 58 1. 湖口土系-------------------------------------------------------------------- 58 2. 竹圍土系--------------------------------------------------------------------- 58 3. 蘆竹土系-------------------------------------------------------------------- 60 第三節、土壤基本化學性質分析----------------------------------------------- 60 1. 湖口土系-------------------------------------------------------------------- 60 2. 竹圍土系-------------------------------------------------------------------- 64 3. 蘆竹土系-------------------------------------------------------------------- 66 第四節、土壤水文狀況---------------------------------------------------------- 67 1. 湖口土系-------------------------------------------------------------------- 67 2. 竹圍土系-------------------------------------------------------------------- 70 3. 蘆竹土系-------------------------------------------------------------------- 72 第五節、土壤氧化還原狀況----------------------------------------------------- 74 1. 湖口土系-------------------------------------------------------------------- 76 2. 竹圍土系-------------------------------------------------------------------- 76 3. 蘆竹土系-------------------------------------------------------------------- 78 第六節、鐵錳結核在週期性浸水土壤中之性質與分佈-------------------- 81 1. 鐵錳結核物理性質-------------------------------------------------------- 81 2. 鐵錳結核化學性質-------------------------------------------------------- 83 3. 鐵錳結核含量與水文狀況之關係-------------------------------------- 88 4. 鐵錳結核之微形態特徵之觀察----------------------------------------- 94 第七節、半影像分析與目視法對氧化還原形態特徵的比較------------- 101 1. 湖口土系-------------------------------------------------------------------- 101 2. 竹圍土系-------------------------------------------------------------------- 102 3. 蘆竹土系-------------------------------------------------------------------- 102 第五章、討論------------------------------------------------------------------------------ 107 第一節、氧化還原形特徵與水文狀況之關係-------------------------------- 107 1. 利用色度指標預測水田化土壤之水文狀況--------------------------- 107 2. 形態特徵指標與水分境況之關係--------------------------------------- 113 第二節、影像分析對土壤中氧化還原形態特徵之改善------------------ 119 1. 影像分析與目示法在鑑定形態特徵上的差異----------------------- 119 2. 影像分析對水文預測指標的影響--------------------------------------- 124 第三節、土壤不同水文狀況對鐵錳結核生成機制之探討--------------- 128 第四節、不同還原狀況下含鐵網紋浸水極育土分類標準之建立------- 139 第五節、未來研究方向----------------------------------------------------------- 141 第六章、結論------------------------------------------------------------------------------ 143 第七章、參考文獻------------------------------------------------------------------------ 145 附錄------------------------------------------------------------------------------------------ 156 圖 目 錄 圖2-1土壤剖面浸水飽和之三種型式------------------------------------------------ 7 圖2-2第一型式氧化斑紋的形成機制------------------------------------------------ 13 圖2-3第二型式氧化斑紋的形成機制------------------------------------------------ 14 圖3-1中壢台地之地理位置圖--------------------------------------------------------- 32 圖3-2 1985-2005年研究區域之平均月降雨量和蒸發散量---------------------- 33 圖3-3研究區域及研究土系地形位置圖--------------------------------------------- 34 圖3-4監測裝置位置深度及位置分配圖--------------------------------------------- 39 圖3-5面積連續加總法之示意圖------------------------------------------------------ 43 圖3-6無定形態鐵、鋁、錳之萃取與測定步驟------------------------------------ 48 圖3-7游離態鐵、鋁、錳之萃取與測定步驟--------------------------------------- 49 圖4-1湖口土系之剖面形態特徵------------------------------------------------------ 51 圖4-2竹圍土系之剖面形態特徵------------------------------------------------------ 56 圖4-3蘆竹土系之剖面形態特徵------------------------------------------------------ 59 圖4-4湖口、竹圍與蘆竹土系於2004及2005中之地下水位變化------------ 68 圖4-5湖口土系2004和2005年中25、50、100及200公分深度水勢能變化 69 圖4-6竹圍土系2004和2005年中25、50、100及200公分深度水勢能變化 71 圖4-7蘆竹土系2004和2005年中25、50、100及200公分深度水勢能變化 73 圖4-8湖口土系2004和2005年中25、50、100及200公分深度之氧化 還原電位變化-------------------------------------------------------------------- 75 圖4-9竹圍土系2004和2005年中25、50、100及200公分深度之氧化 還原電位變化-------------------------------------------------------------------- 77 圖4-10蘆竹土系2004和2005年中25、50、100及200公分深度之氧化 還原電位變化-------------------------------------------------------------------- 80 圖4-11湖口土系不同粒徑鐵錳含量剖面分佈------------------------------------- 90 圖4-12竹圍土系不同粒徑鐵錳含量剖面分佈------------------------------------- 91 圖4-13蘆竹土系不同粒徑鐵錳含量剖面分佈------------------------------------- 93 圖4-14湖口土系不同土層下氧化還原微形態特徵照片------------------------- 99 圖4-15湖口土系不同土層下氧化還原微形態特徵照片------------------------- 97 圖4-16竹圍土系不同土層下氧化還原微形態特徵照片------------------------- 98 圖4-17蘆竹土系不同土層下氧化還原微形態特徵照片------------------------- 99 圖4-18蘆竹土系不同土層下氧化還原微形態特徵照片------------------------- 100 圖5-1台灣北部桃園地區中不同海拔高度之土系的地理位置分佈----------- 109 圖5-2背坡位置1996至1997年之(a)地下水位、(b) 25, 50, 100及200公分 深度的水勢能,及(c) 25, 50, 100及200公分之平均氧化還原電位- 112 圖5-3麓坡位置1996至1997年之(a)地下水位、(b) 25, 50, 100及200公分 深度的水勢能,及(c) 25, 50, 100及200公分之平均氧化還原電位- 114 圖5-4趾坡位置1996至1997年之(a)地下水位、(b) 25, 50, 100及200公分 深度的水勢能,及(c) 25, 50, 100及200公分之平均氧化還原電位- 115 圖5-5色度指標與還原時間之迴歸(a)<50公分,實線代表迴歸線,虛線 代表信賴區間(99%) (b)50-100公分(c)>100公分------------------------ 116 圖5-6色度指標與飽和時間之迴歸(a)<50公分,實線代表迴歸線,虛線 代表信賴區間(99%) (b)50-100公分(c)>100公分------------------------ 117 圖5-7目視法與影像分析法鑑定湖口土系氧化還原形態特徵之比較-------- 121 圖5-8目視法與影像分析法鑑定竹圍土系氧化還原形態特徵之比較-------- 122 圖5-9 目視法與影像分析法鑑定蘆竹土系氧化還原形態特徵之比較-------- 123 圖5-10 色度指標與土壤還原時間之迴歸分析------------------------------------- 127 圖5-11 鐵結晶化指標與活度指標與土壤還原時間之迴歸分析---------------- 135 圖5-12 本研究之鐵錳結核生成機制圖---------------------------------------------- 136 圖5-13 鐵錳結核形成過程機制推論圖---------------------------------------------- 137 圖5-14 鐵錳結核增大過程機制推論圖---------------------------------------------- 138 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鐵錳結核 | zh_TW |
| dc.subject | 氧化還原形態特徵 | zh_TW |
| dc.subject | 極育土 | zh_TW |
| dc.subject | 鐵網紋 | zh_TW |
| dc.subject | 鐵結晶化指標 | zh_TW |
| dc.subject | 鐵活度指標 | zh_TW |
| dc.subject | redoximorphic features | en |
| dc.subject | iron crystalline index | en |
| dc.subject | iron activity index | en |
| dc.subject | iron and manganese nodules | en |
| dc.subject | Ultisols | en |
| dc.subject | plinthite | en |
| dc.title | 桃園中壢臺地不同水分境況下含鐵網紋極育土氧化還原形態特徵之鑑定與鐵錳結核生成機制 | zh_TW |
| dc.title | Identification of the Redoximorphic Features and Formation Mechanism of Fe-Mn Nodules in Ultisols with Plinthite under Different Moisture Regime in Chungli Terrace | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李達源(Dar-Yuan Lee),何聖賓(Sheng-Bin Ho),許正一(Zeng-Yei Hseu),蔡呈奇(Chen-Chi Tsai),黃政恆(Jang-Hung Huang) | |
| dc.subject.keyword | 鐵網紋,極育土,氧化還原形態特徵,鐵錳結核,鐵活度指標,鐵結晶化指標, | zh_TW |
| dc.subject.keyword | plinthite,Ultisols,redoximorphic features,iron and manganese nodules,iron activity index,iron crystalline index, | en |
| dc.relation.page | 156 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
