請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33818完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | |
| dc.contributor.author | Ku-Ning Chang | en |
| dc.contributor.author | 張谷寧 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:46:45Z | - |
| dc.date.available | 2011-07-28 | |
| dc.date.copyright | 2011-07-28 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | [1] 張進福, '我國生技產業現況與發展策略,' 2010.
[2] 吳宗正, '生物感測器,' 九州出版社, 1996. [3] A. J. Cunningham, 'Introduction to bioanalytical sensors,' John Wiley & Sons., 1998. [4] http://www.unmc.edu/pathology/mif_equipment.htm. [5] http://biobest.com.au/bioweb/. [6] L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, 'Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization,' Journal of the American Chemical Society, vol. 122, pp. 9071-9077, 2000. [7] O. Lazcka, F. J. D. Campo, and F. X. Munoz, 'Pathogen detection: A perspective of traditional methods and biosensors,' Biosensors and Bioelectronics, vol. 22, pp. 1205-1217, 2007. [8] M. H. F. Meyer, M. Hartmann, and M. Keusgen, 'SPR-based immunosensor for the CRP detection--A new method to detect a well known protein,' Biosensors and Bioelectronics, vol. 21, pp. 1987-1990, 2006. [9] A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner, 'Ferrocene-mediated enzyme electrode for amperometric determination of glucose,' Analytical Chemistry, vol. 56, pp. 667-671, 1984. [10] S. Tombelli, M. Minunni, E. Luzi, and M. Mascini, 'Aptamer-based biosensors for the detection of HIV-1 Tat protein,' Bioelectrochemistry, vol. 67, pp. 135-141, 2005. [11] L. Yang, Y. Li, and G. F. Erf, 'Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7,' Analytical Chemistry, vol. 76, pp. 1107-1113, 2004. [12] C. Berggren, B. Bjarnason, and G. Johansson, 'An immunological Interleukine-6 capacitive biosensor using perturbation with a potentiostatic step,' Biosensors and Bioelectronics, vol. 13, pp. 1061-1068, 1998. [13] G. Farace, G. Lillie, T. Hianik, P. Payne, and P. Vadgama, 'Reagentless biosensing using electrochemical impedance spectroscopy,' Bioelectrochemistry, vol. 55, pp. 1-3, 2002. [14] J. Homola, 'Present and future of surface plasmon resonance biosensors,' Analytical and Bioanalytical Chemistry, vol. 377, pp. 528-539, 2003. [15] S. Lin, C.-K. Lee, Y.-H. Lin, S.-Y. Lee, B.-C. Sheu, J.-C. Tsai, and S.-M. Hsu, 'Homopolyvalent antibody-antigen interaction kinetic studies with use of a dual-polarization interferometric biosensor,' Biosensors and Bioelectronics, vol. 22, pp. 715-721, 2006. [16] J. Malmstrom, H. Agheli, P. Kingshott, and D. S. Sutherland, 'Viscoelastic Modeling of Highly Hydrated Laminin Layers at Homogeneous and Nanostructured Surfaces: Quantification of Protein Layer Properties Using QCM-D and SPR,' Langmuir, vol. 23, pp. 9760-9768, 2007. [17] F. Huber, M. Hegner, C. Gerber, H.-J. Gtherodt, and H. P. Lang, 'Label free analysis of transcription factors using microcantilever arrays,' Biosensors and Bioelectronics, vol. 21, pp. 1599-1605, 2006. [18] L. Tymecki and R. Koncki, 'Thick-film potentiometric biosensor for bloodless monitoring of hemodialysis,' Sensors and Actuators B: Chemical, vol. 113, pp. 782-786, 2006. [19] F. Kuralay, H. Ozyoruk, and A. YildIz, 'Potentiometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film,' Sensors and Actuators B: Chemical, vol. 109, pp. 194-199, 2005. [20] F. Kuralay, H. Ozyoruk, and A. YildIz, 'Amperometric enzyme electrode for urea determination using immobilized urease in poly(vinylferrocenium) film,' Sensors and Actuators B: Chemical, vol. 114, pp. 500-506, 2006. [21] Y. Y. Xu, C. Bian, S. Chen, and S. Xia, 'A microelectronic technology based amperometric immunosensor for [alpha]-fetoprotein using mixed self-assembled monolayers and gold nanoparticles,' Analytica Chimica Acta, vol. 561, pp. 48-54, 2006. [22] J. S. Daniels and N. Pourmand, 'Label-Free Impedance Biosensors: Opportunities and Challenges,' Electroanalysis, vol. 19, pp. 1239-1257, 2007. [23] E. Komarova, K. Reber, M. Aldissi, and A. Bogomolova, 'New multispecific array as a tool for electrochemical impedance spectroscopy-based biosensing,' Biosensors and Bioelectronics, vol. 25, pp. 1389-1394, 2010. [24] C. Berggren, B. Bjarnason, and G. Johansson, 'Capacitive Biosensors,' Electroanalysis, vol. 13, pp. 173-180, 2001. [25] V. Escamilla-Gomez, S. Campuzano, M. Pedrero, and J. M. Pingarron, 'Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation,' Biosensors and Bioelectronics, vol. 24, pp. 3365-3371, 2009. [26] D. R. Thevenot, K. Toth, R. A. Durst, and G. S. Wilson, 'Electrochemical biosensors: recommended definitions and classification,' Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001. [27] S. P. Mohanty and E. Kougianos, 'Biosensors: a tutorial review,' Potentials, IEEE, vol. 25, pp. 35-40, 2006. [28] K. W. H. A. L. Newman, and W. D. Stanbro, 'The capacitive affinity sensor: a new biosensor,' 1986. [29] R. F. Taylor, I. G. Marenchic, and E. J. Cook, 'An acetylcholine receptor-based biosensor for the detection of cholinergic agents,' Analytica Chimica Acta, vol. 213, pp. 131-138, 1988. [30] R. F. Taylor, I. G. Marenchic, and R. H. Spencer, 'Antibody- and receptor-based biosensors for detection and process control,' Analytica Chimica Acta, vol. 249, pp. 67-70, 1991. [31] R. Maalouf, C. Fournier-Wirth, J. Coste, H. Chebib, Y. Saikali, O. Vittori, A. Errachid, J.-P. Cloarec, C. Martelet, and N. Jaffrezic-Renault, 'Label-Free Detection of Bacteria by Electrochemical Impedance Spectroscopy: Comparison to Surface Plasmon Resonance,' Analytical Chemistry, vol. 79, pp. 4879-4886, 2007. [32] V. Nandakumar, J. T. La Belle, J. Reed, M. Shah, D. Cochran, L. Joshi, and T. L. Alford, 'A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy,' Biosensors and Bioelectronics, vol. 24, pp. 1039-1042, 2008. [33] Y.-T. Long, C.-Z. Li, H.-B. Kraatz, and J. S. Lee, 'AC Impedance Spectroscopy of Native DNA and M-DNA,' Biophysical Journal, vol. 84, pp. 3218-3225, 2003. [34] M. Jie, C. Y. Ming, D. Jing, L. S. Cheng, L. Huai na, F. Jun, and C. Y. Xiang, 'An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,' Electrochemistry Communications, vol. 1, pp. 425-428, 1999. [35] S.-J. Ding, B.-W. Chang, C.-C. Wu, M.-F. Lai, and H.-C. Chang, 'Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes,' Electrochimica Acta, vol. 50, pp. 3660-3666, 2005. [36] J. J. Gooding and E. A. H. Hall, 'A Fill-and-Flow Biosensor,' Analytical Chemistry, vol. 70, pp. 3131-3136, 1998. [37] M. Zhao, I. S. Harding, D. B. Hibbert, and J. J. Gooding, 'A Portable Fill-and-Flow Channel Biosensor with an Electrode to Predict the Effect of Interferences,' Electroanalysis, vol. 16, pp. 1221-1226, 2004. [38] A. Chen and T. Pan, 'Fit-to-Flow (F2F) interconnects: Universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems,' Lab on a Chip, vol. 11, pp. 727-732, 2011. [39] A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed. New York: Wiley & Sons, Inc., 2001. [40] 胡啟章, 電化學原理與方法, 初版 ed. 台北: 五南圖書, 2002. [41] R. Renneberg, F. Lisdat, O. Pänke, T. Balkenhohl, J. Kafka, D. Schäfer, and F. Lisdat, 'Impedance Spectroscopy and Biosensing,' in Biosensing for the 21st Century. vol. 109: Springer Berlin / Heidelberg, 2008, pp. 195-237. [42] K. E. Sapsford and F. S. Ligler, 'Real-time analysis of protein adsorption to a variety of thin films,' Biosensors and Bioelectronics, vol. 19, pp. 1045-1055, 2004. [43] http://www.jic.ac.uk/microscopy/more/t5_6.htm. [44] D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, 'Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues,' Physiological Reviews, vol. 90, pp. 1103-1163, July 1, 2010. [45] http://www.harrickplasma.com/products.php. [46] J. M. Tour, L. Jones, D. L. Pearson, J. J. S. Lamba, T. P. Burgin, G. M. Whitesides, D. L. Allara, A. N. Parikh, and S. Atre, 'Self-Assembled Monolayers and Multilayers of Conjugated Thiols, .alpha.,.omega.-Dithiols, and Thioacetyl-Containing Adsorbates. Understanding Attachments between Potential Molecular Wires and Gold Surfaces,' Journal of the American Chemical Society, vol. 117, pp. 9529-9534, 1995. [47] http://www.microscopy.olympus.eu/microscopes/. [48] B. Clyne and J. S. Olshaker, 'The C-reactive protein,' Journal of Emergency Medicine, vol. 17, pp. 1019-1025, 1999. [49] The American Heart Association, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33818 | - |
| dc.description.abstract | 隨著現代醫療科技發展的突飛猛進,人類的平均壽命跟著逐年增加,使得老年人口數量提升,導致高齡化社會來臨,因此,未來醫療照護的需求也將逐漸提升。也因此,醫療照護的觀念逐漸延伸到小型診所和一般家庭,因此有越來越多以定點照護(Point-of-care, POC)為訴求的生物感測器產生。由於目前心血管疾病是造成台灣國人死亡前三名的疾病,因此本研究希望能結合定點照護的概念,開發出應用於此疾病的生物感測器,檢測其相關的生物指標蛋白質(例如:C-reactive protein (CRP)與S100)。
為了達到定點照護的功能,小體積、低成本、易操作及足夠的靈敏度等特性,都是在設計生物感測器時必須考慮到的因素。由於光學式生物感測器有體積大、成本高與光路校正不易等問題,因此較不適合開發成定點照護的儀器;而電化學阻抗式生物感測器的靈敏度不差、校正方便,設計上也比較容易使體積微小化,因此本研究選擇後者做為生物晶片開發的基礎。為了降低成本、節省樣本使用量以及提升操作的方便性,我們將電化學的三極式電極設計成生物晶片,並結合微流道系統,形成微流體生物晶片。本研究利用Cysteamine與ATP作為晶片的連結分子,分別進行CRP與S100的抗體-抗原交互反應,並利用電化學阻抗分析法(EIS),驗證微流體生物晶片之可行性。結果顯示,隨著抗原濃度增大,電子傳遞電阻的變化量(∆Ret)與其呈現相當線性之關係,可見生物晶片檢測之穩定性。整體的線性量測區間為10 ng/ml~10 μg/ml,檢測極限可達10 ng/ml,比美國心臟協會所公布的心血管疾病低危險群的1000 ng/ml(CRP)標準還要低於兩個濃度等級。此外,為了確保連結分子產生不變性以提升生物晶片修飾後的良率,我們希望能將新合成且穩定性較佳的導電連結分子(AS2SAc)與生物晶片做結合,因此利用螢光顯微術以及電化學阻抗分析法來驗證AS2SAc之鍵結能力與導電效果。結果顯示,AS2SAc確實有其鍵結效果;就EIS結果來看,Ret值約在幾千歐姆左右,屬於導電能力佳的連結分子。因此,若將微流體生物晶片與AS2SAc兩者結合,除了能保有手持式、可拋棄與小體積等優點,更增加了長時間保存的特性,未來將更適合應用於定點照護的生物感測器上。 | zh_TW |
| dc.description.abstract | With the rapid development of medical technology, average life span of human has greatly increased over the years. The trend of fast approach to an aging society for most developed countries has raised the demand for better medical cares. To improve the health care, it is vital to diagnose the diseases such as cancers and cardiovascular disease in an early stage. All of which have driven the concept of point-of-care testing (POCT) to small clinics and typical families. To achieve the above-mentioned vision, many portable biosensors are to be developed. Since cardiovascular disease (CVD) induced death remains on the top 3 death causes in Taiwan over the years, we hope to develop a biosensor for the detection of CVD biomarkers. The newly developed POCT utilized biomarkers such as CRP and S100 for diagnosis.
Since typical optical biosensors have problems such as miniaturization difficulty, high cost and light alignment difficulty, etc., we adopted electrochemical methods for our biosensor development. A good biosensor developed for POCT implementation should have advantages such as small size, low cost, and ease of operation. Therefore, we miniaturized the three-electrodes onto a biochip, and combined it with microfluidics to construct a microfluidic biochip system. Here we used Cysteamine and ATP as our bio-linkers to perform the antibody-antigen interaction tests for the verifications of the microfluidic biochip’s feasibility. The proteins we used here are CRP and S100. The results showed that the change of electron transfer resistance grows linearly with the protein concentrations. The detection range was identified to be from 10 ng/ml to10 μg/ml, and the detection limit was 10ng/ml. This is two orders of magnitude lower than the concentration of a person faces a low risk of developing cardiovascular disease (AHA). Besides, we did the fluorescence test and the impedance measurement on a novel conductive linker, AS2SAc. This linker is stable and easy to preserve; therefore, we hope to improve the sensor stability by the use of the linker. From the experimental results, we found that the AS2SAc has a sufficient binding ability and a low Ret, which is suitable for the protein detection. Hence, we believe that by combining the microfluidic biochip and AS2SAc, the biosensor we developed can be very useful for POCT implementation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:46:45Z (GMT). No. of bitstreams: 1 ntu-100-R98543031-1.pdf: 4934374 bytes, checksum: ba96c9d1edf4cc5e927caf421d25bb46 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝誌…………………………………………………………………………….………...i
摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 生物感測器介紹與發展 2 1.3 文獻回顧 5 1.3.1 非法拉第反應 7 1.3.2 法拉第反應 9 1.4 研究動機 10 第二章 基本原理 12 2.1 電化學基本原理 12 2.1.1 前言與電化學反應系統 12 2.1.2 法拉第與非法拉第程序 13 2.1.3 電化學反應程序 16 2.1.4 電化學槽與半反應 17 2.1.5 參考電極 20 2.1.6 階梯電位技術 22 2.1.7 線性掃描伏安法 (Linear Sweep Voltammetry, LSV) 23 2.1.8 循環伏安法 (Cyclic Voltammetry, CV) 24 2.2 EIS基本原理 25 2.2.1 交流電之電路原理 26 2.2.2 等效電路 27 2.3 螢光顯微術基本原理 31 第三章 實驗系統架設與量測方法 34 3.1 微流道系統架構之設計 34 3.1.1 微流體生物晶片設計 35 3.1.2 第一代微流體生物晶片系統 36 3.1.3 第二代微流體生物晶片系統 37 3.1.4 實驗設備與控制軟體 38 3.2 EIS量測 39 3.2.1 連結分子與生物分子 39 3.2.2 化學試劑與其他溶液 40 3.2.3 溶液配置之實驗設備 41 3.2.4 電極表面修飾方法 44 3.2.5 抗體固定方法 46 3.2.6 抗體-抗原交互反應之方法 46 3.2.7 量測方法 47 3.3 螢光顯微術量測方法 49 3.3.1 螢光蛋白質鍵結步驟 49 3.3.2 量測步驟 50 第四章 實驗結果分析與討論 53 4.1 微流體生物晶片之裸電極測試結果 53 4.2 第一代微流體生物晶片系統之EIS量測結果 55 4.2.1 以Cysteamine為連結分子之CRP抗體-抗原反應 55 4.2.2 以ATP為連結分子之CRP抗體-抗原反應 59 4.3 第二代微流體晶片系統之EIS量測結果 63 4.3.1 以ATP為連結分子之CRP抗體-抗原反應 63 4.3.2 以ATP為連結分子之S100抗體-抗原反應 65 4.4 AS2SAc連結分子之鍵結效果 68 4.4.1 螢光顯微鏡之量測結果 68 4.4.2 EIS量測結果 72 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 定點照護 | zh_TW |
| dc.subject | 阻抗式生物感測器 | zh_TW |
| dc.subject | 微流體生物晶片 | zh_TW |
| dc.subject | CRP | zh_TW |
| dc.subject | 免標定 | zh_TW |
| dc.subject | Point-of care | en |
| dc.subject | Label-free | en |
| dc.subject | Impedance biosensor | en |
| dc.subject | CRP | en |
| dc.subject | Microfluidic biochip | en |
| dc.title | 免標定電化學阻抗生醫感測器之微流體晶片開發 | zh_TW |
| dc.title | Development of a microfluidic chip for a label-free impedance biosensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林世明 | |
| dc.contributor.oralexamcommittee | 李世元,林致廷,李舒昇 | |
| dc.subject.keyword | 定點照護,微流體生物晶片,CRP,阻抗式生物感測器,免標定, | zh_TW |
| dc.subject.keyword | Point-of care,Microfluidic biochip,CRP,Impedance biosensor,Label-free, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
