Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡永傑(Wing-Kit Choi)
dc.contributor.authorYui-Hung Wuen
dc.contributor.author吳岳鴻zh_TW
dc.date.accessioned2021-06-13T05:46:25Z-
dc.date.available2007-07-25
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-13
dc.identifier.citation[1] Pochi Yeh, and Claire Gu, “Optics of Liquid Crystal Displays,” Wiley, 1999.
[2] K. H. Kim, K. H. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, Asia
display ’98, p. 383, 1998.
[3] Shingo Kataoka, Takahiro Sasaki, Arihiro Takeda and Yoshio Koike, “Alignment
Condition and T-V Characteristics in MVA-LCDs,” SID’97 digest of Tech. Paper,
28 , p. 845, 2997.
[4] Mahsumi Kubo, Shogo Fujioka, Takashi Ochi and Yozo Narutaki, “Development
of Advanced TFT with Good Legibility Under Any Intensity of Ambient Light,”
IDW’99, p.183, 1999.
[5] Kyeong-Iin Kim, Joo Soo Lim, Tae Yong Jung, Chul Nam, and Byung Chul Ahn,
“A New Transflective TFT-LCD with Dual Color Filter,” IDW’02, p.433, 2002.
[6] Yozo Narutaki, Kohichi Fujimori, Yasuhisa Itoh, Tokihiko Shinomiya, Naofumi
Kimura, Shiegaki Mizushima, and Masaya Hijikigawc, “High efficient
transflective TFT-LCDs with novel structure,” IDW’02, p.299, 2002.
[7] S.J. Roosendaal1, B.M.I. van der Zande, A.C. Nieuwkerk, C.A. Renders, J.T.M.
Osenga, C. Doornkamp, E. Peeters, J. Bruinink, and J.A.M.M. van Haaren, “Novel
High Performance Transflective with a Patterned Retarder,” SID’03 DIGEST,
p.78, 2003.
[8] Chiu-Lien Yang and Wei-Yi Ling, “A Novel Transflective Hybrid-Mode LCD with
Low Driving Voltage,” SID’04 DIGEST, p.659, 2004.
[9] Chiu-Lien Yang, I-An Yao, Wei-Yi Ling, Pin-Fa Wang, Chueh-Ju Chen, and
Jia-Pang Pang, “A Transflective OCB LCD with Wide Viewing Angle and Fast
Response,” SID’05 DIGEST, p.1876, 2005.
[10] Rob van Asselt, Rob A.W. van Rooij, Dirk J. Broer, “Birefringent Colour
Reflective Liquid Crystal Displays Using Broadband Cholesteric Reflectors,”
SID’00 DIGEST, p.742, 2000.
[11] Yuzo Hisatake, Toshiya Ohtake, Atsuko Oono, and Yoshinori Higuchi, “A Novel
Transflective TFT-LCD using Cholesteric Half Reflector,” IDW’01 DIGEST,
p.129, 2001.
[12] Sung-Chul Kim, Won Sang Park, Duk Woon Choi, Jin Woo Kang, Gi-Dong Lee,
Tae-Hoon Yoon, and Jae Chang Kim, “Optical .Configuration for a Transflective
Display Mode Using an .Antiferroelectric Liquid Crystal Cell,” SID’01 DIGEST,
p.826, 2001.
[13] Kang-Hung Liu, Ching-Yih Cheng, Yuh-Ren Shen, Chih Ming Lai, Chia-Rong
Sheu, Yang-Yi Fan, Cheng-Chung Chen, and Ing-Jcr Lin, “A Novel Double
Gamma Driving Transflective TFT LCD,” IDMC’ 03, p.215, 2003.
[14] Seo Hern LEE, Hee Wook DO, Gi-Dong LEE, Tae-Hoon YOON1 and Jae Chang
KIM, “A Novel Transflective Liquid Crystal Display with a Periodically
Patterned Electrode,” Appl. Phys Vol 42, pp.L1455, 2003.
[15] Yi-Pai Huang, Mu-Jen Su, and Han-Ping David Shieh, “A Single Cell-Gap
Transflective Color TFT-LCD by using Image-Enhanced Reflector,” SID’03
DIGEST, p.86, 2003.
[16] F. Zhou and D. –K. Yang, “Wavelength Divided Trans-reflective Liquid Crystal
Display,” SID’03 DIGEST, p.82, 2003.
[17] Chul Gyu Jhun, Jin-Woo Kang, Tae-Hoon Yoon, and Jae Chang Kim, “Optical
Configuration for Transflective Mode Using Dual-Antiferroelectric Liquid
Crystal Cell for High Transmittance efficiency,” SID’03 DIGEST, p.198, 2003.
[18] Y. Y. Fan, H. C. Chiang, T. Y. Ho, Y. M. Chen, Y. C. Hung, I. J. Lin, C. R. Sheu,
C. W. Wu, D. J. Chen, J. Y. Wang, B. C. Chang, Y. J. Wong, K. H. Liu, “A
Single-Cell-Gap Transflective LCD,” SID’04 DIGEST, p.647, 2004.
[19] Yi-Pai Huang, Xinyu Zhu, Hongwen Ren, Qi Hong, Thomas X. Wu, Shin-Tson
Wu, Mu-Zen Su, Meng-Xi Chan, She-Hong Lin, Han-Ping D. Shieh, “Full-color
transflective cholesteric LCD with image-enhanced reflector,” Journal of the
SID’12/4(1), p.1, 2004.
[20] Seung-Gon Kang, Seong-Ho Kim, Seock-Cheon Song, Won-Sang Park, Chung
Yi, Chi-Woo Kim, Kyu-Ha Chung, “Development of a Novel Transflective Color
LTPS-LCD with Cap-Divided VA-Mode,” SID’04 DIGEST, p.31, 2004.
[21] Fushan Zhou and Deng-Ke Yang, “Polymer Stabilized Electrically Controlled
Birefringence Transreflective Liquid Crystal Displays,” SID’04 DIGEST, p.38,
2004.
[22] Seong-Ryong Lee, Mi Jun Jung, Kyoung-Ho Park, Tae-Hoon Yoon, and
Jae-Chang Kim, “Design of a Transflective LCD in the OCB Mode,” SID’05
DIGEST, p.734, 2005.
[23] Gak Seok Lee, Kyong-Ho Park, Jae Chang Kim, and Tae-Hoon Yoon,
“Optimization of Electrode Structure for Single Gamma in a Transflective IPS
LCD,” SID’05 DIGEST, p.738, 2005.
[24] Yong-Woon Lim, Jinyool Kim, and Sin-Doo Lee, “A Transflective Liquid Crystal
Display Having a Patterned Retardation Layer,” SID’05 DIGEST, p.1876, 2005.
[25] K.-H. Kim, S.-B. Park, J.-U. Shim, J.-H. Souk, “New LCD Modes for
Wide-Viewing-Angle Applications,” SID’98 DIGEST, 1998.
[26] H. Yoshida, Y. Nakanishi, T. Sasabayashi, Y. Tasaka, and K.Okamoto,
“Fast-Switching LCD with Multi-Domain Vertical Alignment Driven by an
Oblique Electric Field,” SID’00 DIGEST, p.334, 2000.
[27] A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi,
Y. Koike, K. Okamoto , “A Super-High Image Quality Multi-Domain Vertical
Alignment LCD ,” SID’98, 41.1, 1998.
[28] D.K.G. de Boer, M.T. Johnson, J.A.M.M. van Haaren , “Optical Response of
Structured Vertically Aligned and In-Plane Switching LCDs ,” SID’00, p.22,
2000.
[29] X Tanaka, K Taniguchi, Z Sasaki, A. Takeda, Y Koibe, K. Okamoto , “A New
Design to Improve Performance and Simplify the Manufacturing Process of
High-Quality MVA TFT-LCD Panels ,” SID’99, 16.5L, 1999.
[30] Shin-Tson Wu, and Deng-Ke Yang, “Reflective Liquid Crystal Display,” Wiley,
.2001
[31] 松本正一 和 角田市良, “液晶之基礎與應用,”.國立編譯館, 1998
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33802-
dc.description.abstract我們的研究目標是發展架構在垂直配向液晶模態之單間隙半穿透反射薄膜電晶體液晶顯示器。隨著可攜帶電子產品,像數位相機、個人數位助理、筆記型電腦和手機,需求日漸擴大,半穿透反射薄膜電晶體液晶顯示器日漸重要。現今多數可攜式電子產品是使用雙間隙半穿透半反射薄膜電晶體液晶顯示器。與雙間隙半穿透反射薄膜電晶體相比下,單間隙半穿透反射薄膜電晶體液晶顯示器具有高良率、低成本、製造較簡單等的優勢。所以我們會嘗試在單間隙與垂直配向液晶的原則下為穿透部分與反射的部分設計適當不同的架構以使原本在同架構下所具有不同的穿透率對電壓曲線與反射率對電壓曲線能因此而配對,以作為半穿透反射液晶顯示器使用,我們使用垂直配向的目的是可以達到很高的對比值,且容易達到廣視角的目的。舉例來說,我們會在PVA (Patterned ElectrodeVertical-Alignment mode)架構中設計各別適合穿透部分與反射部分的電極圖樣以得到配對的穿透率對電壓與反射率對電壓曲線。我們也會在MVA(Multi-Domain Vertical Alignment)架構中使用適當的間隙,調整穿透部分與反射部分不同寬度、高度、介電係數的突起物,或者是突起物間的間距,設法得到配對的穿透率對電壓與反射率對電壓曲線。我們也會在適當之間隙與絕緣層的厚度之 VA-IPS (Vertical-Alignment-In-Plane-Switching mode)架構下調整各別的電極寬度、電極間隙,或是使用FFS(Fringe Field Switching)的電極架構以得到配對的穿透率對電壓與反射率對電壓曲線。在設計的同時,我們會討論一些我們所使用的模型的性質,像是液晶分子在高電壓下會有分子旋轉的情形、還有對比、色散、穩定性討論。zh_TW
dc.description.abstractOur goal is to develop Single Cell Gap Transflective TFT-LCDs based on VA-Alignment modes. Transflective TFT-LCDs are more and more important with the increasing need of portable devices such as digital cameras, PDA, Laptops, and cell phones. Most portable devices use Double Cell Gap Transflective TFT-LCDs for displaying nowadays. Compared with Double Cell Gap Transflective TFT-LCDs, Single Cell Gap Transflective TFT-LCDs have several advantages such as higher yield, lower cost, and simpler manufacturing. So, we will try to design different structures for Transmittance Part and Reflective Part, respectively, on the premise that the cell gaps are the same and the alignment is vertical to match T-V curve (Transmittance versus Voltage curve) and R-V curve (Reflectance versus Voltage curve). We also use Vertically-Aligned LCs because we can achieve high CR and wider-viewing angle property, easily. Therefore, we will design different electrode pattern for Transmittance Part and Reflective Part in PVA mode (Patterned Electrode Vertical-Alignment mode) to match T-V curve and R-V curve. In addition, we try different width, height, or dielectric constant of protrusions and different spaces between protrusions with suitable cell gap for Transmittance part and Reflective Part in MVA (Multi-Domain Vertical Alignment) mode. Also, we will try VA-IPS mode (Vertical-Alignment-In-Plane-Switching mode). We can try different widths of electrode and different spaces between electrodes with suitable thicknesses of cell gap and dielectric layers. We can try the electrode pattern used in FFS mode (Fringe Field Switching), too. In the meantime, we will discuss some properties such as twist phenomenon, contrast ratio, RGB (Red, Green, and Blue) dispersion, and steady issue in our models.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:46:25Z (GMT). No. of bitstreams: 1
ntu-95-R93941043-1.pdf: 8204207 bytes, checksum: 2e3309c43d63556d1c6154a3a18ca464 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction………………………………………………… 1
1.1 Transflective TFT-LCDs……………………………………………………. 1
1.2 History of Transflective TFT-LCDs……………………………………….... 2
1.2.1 History of Double-Cell-Gap Transflective TFT-LCDs…………………. 2
1.2.2 History of Single-Cell-Gap Transflective TFT-LCDs………………….. 10
1.3 Research Motivation………………………………………………………… 31
Chapter 2 LCD Simulation Tool & Method…………………………… 33
2.1 LC Cell Structure and System Setup………………………………………... 33
2.1.1 LC Cell Structure……………………………………………………….. 33
2.1.2 model setup……………………………………………………………... 35
2.1.3 LC parameters…………………………………………………………... 38
2.1.4 Deformation Profile…………………………………………………….. 38
2.1.5 Mesh…………………………………………………………………….. 40
2.2 Applying Voltage Profile…………………………………………………….. 43
2.3 Data Collection……………………………………………………………… 44
2.3.1 Data Collection in 2DimMos Part……………………………………… 44
2.3.2 Data Collection in Matlab Part…………………………………………. 45
Chapter 3 Realize Single Cell Gap Transflective TFT-LCDs on PVA
(Patterned Electrode Vertical-Alignment mode) – LCDs…... 46
3.1 Introduction………………………………………………………………… 46
3.1.1 Background of PVA……………………………………………………. 46
3.1.2 Structure and Wide-Viewing-Angle principle of PVA…………………. 48
3.2 Different width of electrode and gap in the models based on SamSung’s PVA
Structure…………………………………………………………………….. 51
3.2.1 Introduction…………………………………………………………….. 51
3.2.2 Results of R-V curves by narrowing the width of electrodes…………... 52
3.2.3 Results of R-V curves by enlarging the width of gaps…………………. 54
3.2.4 Finding the trend of R model based on SamSung’s PVA………………. 56
3.2.5 Explanation of Fig. 3.2.3 and Fig. 3.2.6………………………………... 59
3.3 WG model…………………………………………………………………… 60
3.3.1 Introduction……………………………………………………………... 60
V
3.3.2 Achieving the goal of continuing rise of R-V curve……………………. 62
3.3.3 Finding suitable TWxGy to match RW1G8……………………………. 67
3.3.4 Steady issue of RW1G8 and TW4G6…………………………………... 70
3.4 Half-Electrode model……………………………………………………….. 72
3.4.1 Introduction…………………………………………………………….. 72
3.4.2 Result of Half Electrodes Design………………………………………. 73
3.5 Conclusion of Chapter 3…………………………………………………….. 79
Chapter 4 Realize Single Cell Gap Transflective TFT-LCDs on MVA
(Multi-domain Vertical alignment) LCDs............................... 81
4.1 Introduction…………………………………………………………………. 81
4.1.1 Background and Wide-Viewing-Angle principle of MVA……………... 81
4.1.2 Concept of Single-Cell-Gap Transflective on MVA-LCDs…………….. 83
4.2 The protrusion height effect…………………………………………………. 84
4.2.1 Response of different given rise time…………………………………... 84
4.2.2 T-V curve and R-V curve of different protrusions height………………. 86
4.2.3 Height of Protrusions Effect……………………………………………. 89
4.3 The dielectric constant effect………………………………………………... 93
4.3.1 Simulation Results……………………………………………………… 93
4.3.2 Explanation of Dielectric Constant Effect……………………………… 95
4.4 Width of Protrusion and Space between Protrusions Effect………………… 98
4.5 Conclusion of Chapter 4…………………………………………………….. 99
Chapter 5 Realize Single Cell Gap Transflective TFT-LCDs on VA-IPS
(Vertical-Aligned In-Plane Switching) LCDs…………………. 101
5.1 Introduction…………………………………………………………………. 101
5.2 Optimization………………………………………………………………… 106
5.3 VA-IPS R-V curves of different W value and G value……………………… 111
5.4 VA-IPS T-V curves of different W value and G value and comparison between
these T-V curves and the R-V curve of RW3G11…………………………… 117
5.5 Finding the More Equal R-V Curve for the T-V Curve of TW5G5…………. 121
5.6 Conclusion of Chapter 5…………………………………………………….. 125
Chapter 6 Conclusion………………………………………………….. 127
Appendix A Voltage Profile Data............................................................ 128
Appendix B Comparison of data of Our Voltage Profile and data of Single
Voltage…………………………………………………………….. 130
Appendix C Matlab Script for Dealing with Original Data……………... 133
References………………………………………………………………………... 136
dc.language.isoen
dc.subject垂直液晶模態zh_TW
dc.subject半穿透反射zh_TW
dc.subject液晶顯示器zh_TW
dc.subjectTransflectiveen
dc.subjectVAen
dc.subjectLCDen
dc.subjectVertically-Aligneden
dc.title使用垂直液晶模態實現單間隙半穿透反射液晶顯示器zh_TW
dc.titleSingle-Cell-Gap Transflective TFT-LCDs based on Vertically-Aligned LC modeen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖(Hoang Yan Lin),李君浩(Jiun-Haw Lee)
dc.subject.keyword半穿透反射,液晶顯示器,垂直液晶模態,zh_TW
dc.subject.keywordTransflective,Vertically-Aligned,LCD,VA,en
dc.relation.page140
dc.rights.note有償授權
dc.date.accepted2006-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
8.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved