請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝正義(Cheng-I Hsieh) | |
| dc.contributor.author | Jyh-Kwei Shu | en |
| dc.contributor.author | 許志揆 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:45:51Z | - |
| dc.date.available | 2006-07-21 | |
| dc.date.copyright | 2006-07-21 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-12 | |
| dc.identifier.citation | References
1.Acharya S, Dutta A, Myrum T. A., and Baker R. S., 1994, Turbulent flow a surface-mounted two-dimensional rib, Journal of Fluids Engineering, 16, JUNE. 2.Amano, R. S. and Goel, P., 1984, A numerical study of a separating and reattaching flow by using Reynolds-stress turbulence closure, Numerical Heat Transfer, 7, 343-57. 3.Ando T. and Shakouchi T., 2004, Flow characteristics over forward facing step and through abrupt contraction pipe and drag reduction. Res. Rep. Fac. Eng. Mie Univ., 29, pp. 1-8. 4.Antonia, R. A. and Luxton, R. E., 1971, The response of a turbulent boundary layer to a step change in surface roughness, Part1. Smooth-to-Roughness, J. Fluid Mech., 48, part4, pp. 721-761. 5.Antonia, R. A. and Luxton, R. E., 1972, The response of a turbulent boundary layer to a step change in surface roughness. Part2. Roughness-to-smooth, J. Fluid Mech., 58, part4, pp. 737-757. 6.Antonia, R. A. and Luxton, R. E., 1971a, Trans. ASME, J. Basic Engng., 93, 22. 7.Avelino M. R., Rio D. J., 2000, An experimental/numerical study of the turbulent boundary layer development along a surface with a sudden change in roughness, Braz. Soc. Mech. Sci. 22, n.1. 8.Castro, I. P., 1979, Relaxing wakes behind surface-mounted obstacles in rough wall boundary layers, Journal of Fluid Mechanics, 93, pp. 631-659. 9.Chou, P. Y., 1945, On velocity correlations and the solution of the equations of turublent fluctuation, Quart. Appl. Math. 3, 31. 10.Daly, B. J. and Harlow, F. H., 1970, Transport equations of turbulence, Phys. Fluids., 13, 2634. 11.Gerald, C.F. and Wheatley P.O., 1999, Applied Numerical Analysis, 6th ed., Addison Wesley Longman, New York, USA. 12.Ghia, U., Ghia, K. N. and Shin, C. T., 1982, High-Re solutions for incompressible flow using the Naiver-Stokes equations and a multigrid method, Journal of Computational Physics 48, 387-411. 13.Hanjalic, K., 1970, Two dimensional asymmetrical turbulent flow in ducts, Ph. D. Thesis, University of London. 14.Hirt, C. W., Nichols, B.D. and Romero, N. C., 1975, SOLA –A numerical solution algorithm for transient fluid flow, LA-5852 technical report, Los Alamos Scientific Laboratory, USA. 15.Jacobs, W., 1939 Z. angew Math. Mech., 19. 87. Translation, 1940, NACA T.M. 951. 16.Kim J., Kline S. J., and Johnston J. P., 1980, Investigation of a reattaching turbulent shear layer: Flow over a backward-facing step, Journal of Fluids Engineering, 102, pp.302-308. 17.Lakshminarayana, B., 1986, Turbulence modeling of complex shear flows, AIAA Journal, 24, 12, 1900-17. 18.Launder, B. E., Reece, G. J. and Rodi, W., 1975, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech. (1975), 68, part3, pp. 537-566. 19.Leonard, B. P., 1979, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19, p. 59-98. 20.Logan, E. and Jones, J. B., 1963, Trans. ASME, J. Basic Engng 85, 35. 21.Panofsky, H., and Lumley J., 1964, The structure of atmosphere turbulence, New York, Interscience, 239 pp. 22.Peng, Y. F., 1993, The development and application of an anisotropic Reynolds stress model. Ph. D. Thesis, Department of Engineering Science and Ocean Engineering, National Taiwan University. 23.Peterson, E. W., 1969a: Modification of mean flow and turbulent energy by a change in surface roughness under conditions of neutral stability, Quart. J. Roy. Meteor. Soc., 95, 561-575. 24.Promode R., and Bandyopadhyay, 1987, Rough-wall turbulent boundary layers in the transition regime, J. Fluid Mech. 180, 231-266. 25.Rao K. S, Wynggard, J. C. and Cote, O. R., 1974, Local advection for momentum, heat, and moisture in micrometeorology, 7, 331-346. 26.Rao, K. S., Wyngaard, J. C., and Cote, O. R., 1974, The Structure of the two-dimensional internal boundary layer over a sudden change of surface roughness, J. Atmospheric Sci. 31, 738-746. 27.Reynolds, W. C., 1970. Computation of turbulent flows-state-of-the-art, Standford University Mech. Engng Dept. Rep. MD-27. 28.Rodi, W., 1980. Turbulence models and their application in hydraulics-A state of the art review, IAHR, Delft, The Netherlands. 29.Roland, B. S., 1988, An introduction to boundary layer meteorology. 30.Rotta, J. C. 1951, Statistische theorie nichthomogener turbulenz, Z. Phys. 129, 547. 31.Rotta, J. C., 1972, Turbulente Stromungen, B.G. Teubner, Stuttgart. 32.Savelyev, S. A. and Taylor, P. A., 2005, Internal boundary layers:I. Height formulae for neutral and diabatic flows, Boundary-Layer Meteorology 115: 1-25. 33.Smith G. D., 1985, Numerical solution of partial differential equations: finite difference methods. Oxford [Oxfordshire] : Clarendon Press ; New York : Oxford University Press, c1985. 34.Taylor, R. J., 1962, Small scale advection and the neutral wind profile, J. Fluid Mech. 13, 529-539. 35.Townsend, A. A., 1965, The response of a turbulent boundary layer to abrupt changes in surface conditions. J. Fluid Mech., 22, 799-882. 36.Launder, B.E. and Spalding, D. B., 1974, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics, 3, pp. 269-289. 37.Townsend, A. A., 1966, The flow in a turbulent boundary layer after a change in surface roughness. J. Fluid Mech., 26, 255-266. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33770 | - |
| dc.description.abstract | 微氣候中,大部分的地表層分析假定均勻地形流況和水平均勻流動。然而,一個均勻的環境系統在自然界中的存在是相當少見的。一個更有物理意義的有限體積法被用來考慮當流動受地表粗糙度影響時之變化。所以我們使用雷諾應力紊流模式,以了解大氣紊流結構如何被不同地表影響。
地表粗糙度對風速有相當深刻的影響。越粗糙的地表,則越易使大氣邊界層內的風速減速。此研究顯示從粗糙到平滑的紊流邊界層的變化小於平滑到粗糙。紊流強度的分佈也描述了邊界層的變化。地形變化越大則風速變化越大。 | zh_TW |
| dc.description.abstract | In microclimate, most surface layer analyses assume uniform terrain conditions and a horizontally-homogeneous flow. However, a homogeneous environmental system rarely exists in the nature. A finite volume method with more reasonable physical meanings is introduced to consider a flow field over a changed roughness surface. In order to know how various types of surface affect the atmospheric turbulence structure, RSM (Reynolds Stress Model) is used.
Surface roughness has a profound effect on wind speed. The rougher a terrain is, the more it retards the wind in the atmospheric boundary layer. This study reveals that the variation of turbulent boundary layer due to rough-to-smooth is less than that in the smooth-to-rough. The distribution of the turbulence intensities also depicts the variations of the internal boundary layer. The higher height a terrain surface has, the more variation it exhibit near the step change. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:45:51Z (GMT). No. of bitstreams: 1 ntu-95-R93622037-1.pdf: 3377191 bytes, checksum: b211d61c145676bced884769cc2287df (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
Acknowledgements i Chinese Abstract ii Abstract iii Contents iv List of Tables vii List of Figures viii Nomenclature xii Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Objectives 2 1.3 Literature review 2 1.4 Synopsis 5 Chapter 2 Mathematical Formulae and Numerical Model 7 2.1 Governing equations 7 2.2 Turbulence model (Reynolds Stress Model, RSM) 8 2.2.1 Modeling of - equation 10 2.3 Numerical Methods 16 2.3.1 Grid generation 16 2.3.2 Finite volume method 16 2.4 SOLA method 17 2.5 Summary 18 Chapter 3 Validation of Proposed Numerical Model 19 3.1 Cavity flow 19 3.2 Turbulent channel flow passes a square cylinder 19 3.2.1 The experimental setup and procedure 20 3.2.2 Grid-independence studies 21 3.2.3 Mean velocities and turbulent intensity 21 3.3 Summary 23 Chapter 4 Simulations of Nonhomogeneous Terrain Flow 24 4.1 The experimental setup and procedure 24 4.2 Flow from a smooth terrain to a rough terrain 26 4.2.1 Mean Velocities 26 4.2.2 Turbulent kinetic energy and turbulent stresses 27 4.2.3 Growth of the internal boundary layer 27 4.2.4 Discussion 27 4.3 Flow from a rough terrain to a smooth terrain 28 4.3.1 Mean velocities 28 4.3.2 Turbulent kinetic energy and turbulent stresses 28 4.3.3 Growth of the internal boundary layer 29 4.3.4 Discussion 29 4.4 Summary 30 Chapter 5 Conclusions 31 References 78 Curriculum vitae 82 | |
| dc.language.iso | en | |
| dc.subject | 粗糙密度 | zh_TW |
| dc.subject | 雷諾應力紊流模式 | zh_TW |
| dc.subject | 非均勻地形 | zh_TW |
| dc.subject | k-ε紊流模式 | zh_TW |
| dc.subject | 大氣邊界層 | zh_TW |
| dc.subject | 地表粗糙度 | zh_TW |
| dc.subject | Reynolds stress model | en |
| dc.subject | roughness density | en |
| dc.subject | surface roughness | en |
| dc.subject | Atmospheric boundary layer | en |
| dc.subject | k-εmodel | en |
| dc.subject | nonhomogeneous terrain | en |
| dc.title | 非均勻地形之紊流模擬 | zh_TW |
| dc.title | Simulations of Nonhomogeneous Terrain Flows | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳明治,張倉榮,朱佳仁 | |
| dc.subject.keyword | 雷諾應力紊流模式,非均勻地形,k-ε紊流模式,大氣邊界層,地表粗糙度,粗糙密度, | zh_TW |
| dc.subject.keyword | Reynolds stress model,nonhomogeneous terrain,k-εmodel,Atmospheric boundary layer,surface roughness,roughness density, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
