請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33757
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐治平 | |
dc.contributor.author | Shu-Chuan Yang | en |
dc.contributor.author | 楊淑娟 | zh_TW |
dc.date.accessioned | 2021-06-13T05:45:38Z | - |
dc.date.available | 2007-07-28 | |
dc.date.copyright | 2006-07-28 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-12 | |
dc.identifier.citation | [1] I. Machač, B. Šiška, L. Machačcvá, Terminal falling velocity of spherical particles moving through a Carreau model fluid. Chemical Engineering and Processing 2000, 39, 365-369.
[2] K. Ceylan, S. Herdem, T. Abbasov, A theoretical model for estimation of drag force in the flow of non-Newtonian fluids around spherical solid particle, Powder Technology 1999, 103, 286-291. [3] R. P. Chhabra, P. H. T. Uhlherr, Sphere motion through non-Newtonian fluids at high Reynolds number. Canadian Journal of Chemical Engineering 1980, 58, 124-128. [4] F. Concha, E. R. Almerdra, Settling velocities of particulate system. 1. Settling velocities of individual spherical particles. International Journal of Mineral Processing 1979, 5, 349-367. [5] K. Ceylan, A. Altunbas, G. Kelbaliyev, A new model for estimation of drag force in the flow of Newtonian fluids around rigid or deformable particle, Powder Technology 2001, 119, 250-256. [6] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics. Academic Press, New York, 1983. [7] G. D. M. MacKay, M. Suzuki, S. G. Mason, Approach of a solid sphere to a rigid plane interface. Part 2. Journal of Colloid Science 1963, 18, 103-107. [8] H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface, Chemical Engineering Science 1961, 16, 242-251. [9] R. G. Cox, H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surfaceⅡ, Small gap widths, including inertial effects. Chemical Engineering Science 1967, 22, 1753-1777. [10] J. P. Hsu, Y. H. Hsieh, Moving of a nonhomogeneous, porous floc normal to a rigid plate. Journal of Colloid and Interface Science 2004, 275, 309-316. [11] M. Stimson, G. B. Jeffery, The motion of two spheres in a viscous fluid. Proceedings of the Royal Society of London. 1926, A111, 110-117. [12] K. C. Lee, Aerodynamic interaction between two spheres at Reynolds numbers around 104. Aeroautical Quarterly 1979, 30, 371-385. [13] Y. Tsuji, Y. Morikawa, K. Terashima, Fluid dynamics interaction between two spheres. International Journal of Multiphase Flow 1982, 8, 71-82. [14] I. Kim, S. Elghobashi, W.A. Sirignano, three-dimensional flow over two spheres placed side by side. Journal of Fluid Mechanics 1993, 246, 465-488. [15] C. Zhu, S.C. Liang, L.S. Fan, Particle wake effects on the drag force of an interactive particle. International Journal of Multiphase Flow 1994, 20, 117-129. [16] S. C. Liang, T. Hong, L. S. Fan, Effects of particle arrangements on the drag force of a particle in the intermediate flow. International Journal of Multiphase Flow 1996, 22, 285-306. [17] R. C. Chen, J. L. Wu, The flow characteristics between two interactive spheres. Chemical Engineering Science 2000, 55, 1143-1158. [18] L. Schouveiler, A. Brydon, T. Leweke, M. C. Thompson, Interactions of the wakes of two spheres placed side by side. European Journal of Mechanics B/Fluids 2004, 23, 137-145. [19] D. Rodrigue, D. De Kee, C. F. Chan Man Fong, The slow motion of a spherical particle in a Carreau fluid. Chemical Engineering Communications 1996, 154, 203-215. [20] K. Adachi, N. Yoshioka, K. Yamamoto, On non-Newtonian flow past a sphere. Chemical Engineering Science 1973, 28, 2033-2043. [21] K. Ceylan, S. Herdem, T. Abbasov, A theoretical model for estimation of drag force in the flow of non-Newtonian fluids around spherical solid particles. Powder Technology 1999, 103, 286-291. [22] A. Tripathi, R. P. Chhabra, Drag on spheroidal particles in dilatant fluids. AIChE Journal 1995, 41, 728-731. [23] K. A. Missirlis, D. Assimacopoulos, E. Mitsoulis, R. P, Chhabra, Wall effects for motion of spheres in power-law fluids. Journal of Non-Newtonian Fluid Mechanics 2001, 96, 459-471. [24] V. C. Kelessidis, G. Mpandelis, Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids. Powder Technology 2004, 147, 117-125. [25] I. Machač, B. Šiška, R. Teichman, Fall of non-spherical particles in a Carreau model liquid. Chemical Engineering and Processing 2002, 41, 577-584. [26] Y. Kawase, M. Moo-Young, Approximate solutions for drag coefficient of bubbles moving in shear-thinning elastic fluids. Rheologica Acta 1985, 24, 202-206. [27] A. Acharya, R. A. Mashelkar, J. Ulbrecht, Mechanics of bubble motion and determination in non-Newtonian media. Chemical Engineering Science 1977, 32, 863-872. [28] L.E. Becker, G.H. McKinley, H.A. Stone, Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. Journal of Non-Newtonian Fluid Mechanics 1996, 63, 201-233. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33757 | - |
dc.description.abstract | 本文主要是以數值模擬的方法來探討一個平板的邊界對二顆球形粒子在牛頓流體(Newtonian fluid)及卡羅流體(Carreau fluid)自由沉降之影響,並改變流體之性質來比較的平板邊界對粒子速度以及流場的影響程度。關於多顆球形粒子在各種流體中運動之現象,諸如流場以及終端速度之變化,已受到廣泛的研究,而卡羅流體亦漸漸受到矚目。本研究的焦點為邊界以及不同性質之流體對於兩顆球形粒子運動現象之影響,並觀察拖曳係數的變化趨勢、及粒子間的距離與粒子與平板的距離之臨界距離,藉由模擬之結果進行定性及定量分析。考慮的變因包含卡羅流體鬆弛時間,卡羅流體指數n,粒子間的距離,粒子與平板的距離,以及雷諾數的影響。結果顯示,改變平板邊界與粒子間的距離對流場對稱性的影響比改變流體性質及粒子間的距離來的明顯,因此,邊界對拖曳係數的影響較流體性質及粒子間的距離明顯許多。而拖曳係數隨雷諾數變化的趨勢,在卡羅流體中得到和牛頓流體一樣的結果,不過前者shear-thinning的特性使得拖曳係數較後者中的要小。拖曳係數隨Carreau number Cu變化的趨勢也是呈現反比的趨勢,Cu愈大,愈偏離牛頓流體,所以拖曳係數下降愈多。n值對拖曳係數的影響最小,稍稍地呈現正比的趨勢,比較特別的是當流體的Cu值變大時,n值對拖曳係數的影響比較明顯。 | zh_TW |
dc.description.abstract | The influence of the presence of a boundary on the drag of rigid entities is investigated by considering the movement of two identical, rigid, coaxial spheres normal to a plane in both a Newtonian and a Carreau fluid. The parameters key to the phenomenon under consideration, including the nature of the fluid, the separation distance between two particles, the distance between particle and the plane, and the Reynolds number, on the drag coefficient are discussed. The results of numerical simulation reveal that the influence of a boundary on the drag coefficient is more important than that of the nature of a fluid and that of the distance between two particles. The variation of the drag coefficient as a function of Reynolds number for a Carreau fluid is similar to that for a Newtonian fluid. Due to the shear-thinning nature of the former fluid the drag coefficient in the former is smaller than that in the latter fluid. The magnitude of the drag coefficient is inversely proportional to the Carreau number. The influence of the index parameter of a Carreau fluid becomes appreciable when the Carreau number is sufficiently large. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:45:38Z (GMT). No. of bitstreams: 1 ntu-95-R93524027-1.pdf: 1859917 bytes, checksum: 9ff2a6c7f603d97511b25427916c791f (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 Ⅰ
英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅳ 表目錄 Ⅶ 第一章 序論 1 第二章 文獻回顧 4 第三章 理論分析 14 第四章 結果與討論 19 符號表 28 參考文獻 30 | |
dc.language.iso | zh-TW | |
dc.title | 兩剛性球垂直於平板邊界運動之拖曳係數 | zh_TW |
dc.title | Drag Coefficient on Two Rigid Spheres Normnal to a Plane | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曾琇瑱,張有義 | |
dc.subject.keyword | 拖曳係數,卡羅流體,平板,兩顆球, | zh_TW |
dc.subject.keyword | Drag coefficient,Carreau fluid,plane,two spheres, | en |
dc.relation.page | 54 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。