請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏 | |
| dc.contributor.author | Chia-Hsin Pan | en |
| dc.contributor.author | 潘佳欣 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:45:20Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | [1] T. Massoud and S. S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes & Develpoment, vol. 17, pp. 545-580, 2003.
[2] G. S. Ginsburg and J. J. McCarthy, Personalized medicine: revolutionizing drug discovery and patient care, Trends in biotechnology, vol.19, no.12, Dec. 2001. [3] M. Rudin and R. Weissleder, Molecular imaging in drug discovery and development, Nature reviews, drug discovery. vol. 2, Feb. 2003. [4] J. Kim, Y. Piao and T. Hyeon, Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy, Chemical Society Reviews, vol. 38, pp. 372-390, 2009. [5] C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Advanced Drug Delivery Reviews, vol. 60, pp.1252-1265, 2008. [6] 陳敬棠, In vivo tumor detection method by using multi-functional contrast agent for MRI and optical system, 碩士論文, 國立台灣大學生醫電資所, 2009. [7] 鄭豐裕, The preparation of Fe3O4 nanoparticles and their applications in biomedicine, 博士論文, 國立成功大學化學研究所, 2006. [8] 林韋廷, Development of MR nanoprobing for Non-small cell lung cancer: The Application of EGFR antibody conjugated Fe3O4 nanoparticles, 碩士論文, 國立台灣大學醫工所, 2006. [9] A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol. 26, pp.3995-4021, 2005. [10] C. Khemtong, C. W. Kessinger and J. Gao, Polymeric nanomedicine for cancer MR imaging and drug delivery, Chemical Communications, pp. 3497-3510, 2009. [11] H. C. Wu and D. K. Chang, Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy, Journal of Oncology, vol. 2010, article ID 723798, 2010. [12] A.S. Narang and S. Varia, Role of tumor vascular architecture in drug delivery, Advanced Drug Delivery Reviews, vol. 51, issue 3, pp. 327-346, May. 1996. [13] F. Danhier, et al., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, Journal of Controlled Release, vol. 148, issue 2, pp. 135-146, Dec. 2010. [14] T. F. Kosar et al., Nanoparticles administered to the human body: impacts and implications, News from the Bottom, pp. 1-8, 2004. [15] A. Bjornerud, Proton relaxation properties of a particulate iron oxide MR contrast agent in different tissue systems, Doctoral thesis, comprehensive summary, Uppsala University, Medicinska vetenskapsomradet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, 2002. [16] M. Mahmoudi, et al., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Advanced Drug Delivery Reviews, vol. 63, issues 1-2, pp. 24-46. Jan.- Feb. 2011. [17] D. T. Chua et al., Patient attitudes towards chemotherapy as assessed by patient versus physician: A prospective observational study in advanced non-small cell lung cancer, Lung Cancer, vol. 56, issue 3, pp. 433-443, June 2007. [18] “Types of lung cancer”, Cancer research UK, 11 Mar. 2011, < http://www.cancerhelp.org.uk/type/lung-cancer/about/types-of-lung-cancer > (22 May 2011) [19] W. Pao and V. A. Miller, Epidermal growth factor receptor mutations, small- molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions, Journal of Clinical Oncology. vol. 23, number 11, 10 Apr. 2005. [20] O. Dassonville et al., EGFR targeting therapies: Monoclonal antibodies versus tyrosine kinase inhibitors, similarities and differences, Oncology Hematology. vol.63, pp.53-61, 2007. [21] J. Gandhi et al, Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines, Plos One. vol. 4, issue 2, pp. e4576, Feb. 2009. [22] S. S. Sridhar, L. Seymour and F. A. Shepherd. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. The Lancet Oncology, vol. 4, issue 7, pp. 397-406, July 2003. [23] W. S. Siegel-Lakhai, J. H. Beijnen and J. H. M. Schellens, Current knowledge and future directions of the selective epidermal growth factor receptor inhibitors Erlotinib (Tarceva) and Gefitinib (Iressa), The Oncologist, vol. 10, pp.579-589, 2005. [24] C.H. Yun et al., Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity, Cancer Cell, vol. 11(3), pp. 217-227, Mar. 2007. [25] C.S. Yeh et al., R.O.C. Patent 202070; US Patent submitted. [26] “BioSpec 70/30 USR”, Bruker BioSpin, 2011, <http://www.bruker-biospin.com/biospec_70_30.html> (2 June 2011). [27] L. F. Hennequin et al., Design and structure-activity relationship of a new class of potent vegf receptor tyrosine kinase inhibitors, Journal of Medicinal Chemistry, vol. 42, pp.5369-5389, 1999. [28] J. Gandhi1 et al., Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines, Plos one, vol. 4, issue 2, pp.e4576, Feb. 2009. [29] “Research animal models”, Charles river, 2011, <http://www.criver.com/ en-US/ProdServ/ByType/ResModOver/ResMod/Pages/NODSCIDMouse.aspx> (6 June 2011). [30] J. S. Rasey et al., Validation of FLT Uptake as a Measure of Thymidine Kinase-1 Activity in A549 Carcinoma Cells, The Journal of Nuclear Medicine, vol. 43, no. 9, pp.1210-1217, 1 Sep. 2002. [31] R. T. Ullrich et al., Early Detection of Erlotinib Treatment Response in NSCLC by 39-Deoxy-39-[18F]-Fluoro-L-Thymidine ([18F]FLT) Positron Emission Tomography (PET), Plos One, vol. 3, issue 12, pp. e3908, Dec. 2008. [32] D. A. Hamstra, A. Rehemtulla and B. D. Ross, Diffusion Magnetic Resonance Imaging: A Biomarker for Treatment Response in Oncology, Journal of Clinical Oncology, vol. 25, no. 26, 10 Sep. 2007. [33] B. A. Moffat et al., The Functional Diffusion Map: An Imaging Biomarker for the Early Prediction of Cancer Treatment Outcome, Neoplasia, vol. 8, no. 4, pp. 259-267, Apr. 2006. [34] M. Zhao et al., Early detection of treatment response by diffusion-weighted 'H-NMR spectroscopy in a murine tumour in vivo, British Journal of Cancer, vol. 73, pp. 61-64, 1996. [35] J.P.B. O’Connor et al., DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. British Journal of Cancer, vol. 96, pp. 189-195, 2007. [36] N. Hylton, Dynamic Contrast-Enhanced Magnetic Resonance Imaging As an Imaging Biomarker, Journal of Clinical Oncology, vol. 24, no. 20, 10 July 2006. [37] M. Ono and M. Kuwano, Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitiniband other EGFR-targeting drugs, Clinical Cancer Research, vol. 12, pp. 7242-7251, 2006. [38] T. E. Yankeelov et al., Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results, Magnetic Resonance Imaging, vol. 25, issue 1, pp.1-13, Jan. 2007. J. H. Lee, Y. M. Huh, Y. W. Jun et al, Artificially engineered magneticnanoparticles for ultra-sensitive molecular imaging, Nature Medicine, vol. 13, pp. 95-99, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33740 | - |
| dc.description.abstract | 本研究建立於生醫分子影像之基礎上,發展具磁振造影顯影功能並攜帶治療藥物之雙功能顯影劑,以磁振造影之影像達成同時診斷及評估療效之目的。非小細胞肺癌為本研究之疾病模式,將粒徑小之氧化鐵奈米粒子表面鍵結非小細胞肺癌之標靶性藥物─gefitinib,利用腫瘤新生血管豐富及內皮細胞排列鬆散之特性使氧化鐵奈米粒子與藥物累積於腫瘤,對腫瘤進行標定及藥物治療。
Gefitinib作用機制乃上皮生長因子受體(EGFR)之酪胺酸酶(tyrosine kinase)抑制劑,阻斷EGFR活化後的訊息傳遞,進而控制腫瘤生長。近年來研究顯示,Gefitinib對於帶有EGFR突變之非小細胞肺癌細胞有特異性療效,東方人對其之治療反應更優於西方人,故選擇其做為研究之藥物。 在實驗設計方面,包括氧化鐵奈米粒子、修飾之藥物及兩者鍵結後三大部分。氧化鐵奈米粒子以活體外細胞株測試細胞毒性及顯影效果,以小鼠驗證活體顯影效果並持續追蹤氧化鐵奈米粒子被排出體外之時程;藥物部分,以核磁共振(NMR)確認經過修飾可與奈米粒子接合之藥物結構,並以活體外細胞株測試藥物抑制細胞生長之特異性;將氧化鐵奈米粒子與修飾藥物接合後,於活體外細胞株測試藥效、顯影效果、細胞內吞情形及細胞死亡機制,於活體異種移植非小細胞肺癌小鼠模型進行磁振造影分子影像觀測,再輔以組織切片之普魯士藍染色驗證標靶效果。 本研究中驗證合成修飾之gefitinib與結合至氧化鐵奈米粒子表面之gefitinib均可有效抑制具EGFR突變之非小細胞肺癌細胞株PC9的生長,亦藉由Annexin V螢光染色確認結合modified gefitinib之氧化鐵奈米粒子引發PC9細胞株大量邁向自我凋亡。相較於不具突變之wild-type EGFR非小細胞肺癌細胞株A549則無此效果,證明藥物之特異性及治療效果。在磁振造影活體腫瘤小鼠影像部分,注射結合modified gefitinib之氧化鐵奈米粒子,T2權重影像於腫瘤區域在4~8小時後達15%訊號改變,而體內其他組織如肌肉僅有5%的訊號變化,於腫瘤部位組織切片之普魯士藍染色也可以發現大量氧化鐵奈米粒子,從影像及組織切片均證實氧化鐵奈米粒子與藥物可經血流循環標靶運送並累積於腫瘤。 本研究合成出具顯影及攜帶藥物之雙功能顯影劑,藉由氧化鐵奈米粒子將藥物攜帶至腫瘤區域。未來將繼續朝向活體動物之治療效果評估、影像定量藥物局部濃度等方向努力,亦期望可結合不同疾病之藥物,移植於其他疾病模式之診斷及治療評估。 | zh_TW |
| dc.description.abstract | Molecular imaging is the technology that combined molecular biology and clinical medicine in the biomedical field. The goal of this study is to develop a bi-functional contrast agent used in magnetic resonance image (MRI) to achieve the simultaneous imaging and therapy on xenograft non-small cell lung cancer (NSCLC) murine model.
The gefitinib is the targeting drug which is specifically efficient to NSCLC patient with EGFR mutation, it functionalized to inhibit the tyrosine kinase of EGFR for blocking the signal transduction pathway. The small molecules of modified gefitinib were conjugated on the surface of aqueous Fe3O4 nanoparticles, and it delivered through the blood system to the tumor site since the abundant blood vessels and leaky epithelium of tumors. To incorporate the gefitinib and Fe3O4 nanoparticles, we substituted the weak portion of inhibitors with carbon chain, here we called it as “modified gefitinib”. Further, the modified gefitinib and Fe3O4 nanoparticles were incorporated by N-(3-Dimethylamino propyl) -N’-ethylcarbodiimide hydrochloride (EDC). The in vitro assays showed both of the modified gefitinib and Fe3O4@gefitinib efficiently inhibited the cell viability, and cell apoptosis were dramatically induced by Fe3O4@gefitinib in EGFR mutant PC9 cells, whereas the wild-type EGFR A549 cells were not. In vitro assays demonstrated the Fe3O4@gefitinib with specificity of cell inhibitory to PC9 cells. In vivo assay showed the tumor was negative enhanced and signal intensity dropped 15% in T2-weighted imaging after Fe3O4@gefitinib administration 4~8 hours, while the muscle tissue presented less than 5% change. Furthermore, we provided the Prussian’s iron staining of tumor histology to verify the Fe3O4@gefitinib accumulated at tumor site substantially than other organs. As the result, it demonstrated that the Fe3O4@gefitinib could target to tumor through the blood circulation system. We also performed some preliminary study to verify the feasibility of MR technique applied in treatment response evaluation for PC9 animal model. Herein, we produced the bi-functional nanocontrast agent Fe3O4@gefitinib to achieve imaging and therapy simultaneous. In the future, except the improvement of chemical synthesis as well as we would work towards the treatment efficiency evaluation, quantification and prognosis for NSCLC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:45:20Z (GMT). No. of bitstreams: 1 ntu-100-R98945015-1.pdf: 63094866 bytes, checksum: 741d3ca1b0fe6180305ef112af11624e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 誌謝 IV Contents V List of figures VIII Chapter 1 1 Introduction 1 1.1 Research motivation 1 1.2 Research purpose 1 1.3 Thesis organization 1 Chapter 2 3 Background and Literature Review 3 2.1 Introduction of molecular imaging 3 2.1.1 Molecular imaging system 3 2.1.2 Contrast agent of imaging system 6 2.1.3 Contrast agent was used in MR molecular imaging 6 2.1.4 The characteristic and application of magnetic nanoparticles 7 2.2 Disease model 9 2.2.1 The introduction of non-small cell lung cancer (NSCLC) 10 2.2.2 The epidermal growth factor receptor (EGFR) of NSCLC 11 2.2.3 The targeting therapeutic drug of NSCLC- Gefitinib 12 Chapter 3 15 Material and Methods 15 3.1 Fe3O4 nanoparticles 15 3.1.1 Preparation and characterization of aqueous Fe3O4 15 3.1.2 Characterization of the r1 and r2 relaxivity 16 3.1.3 Toxicity evaluation 17 3.1.4 In vivo imaging enhancement 18 3.1.5 Biodistribution 19 3.2 Therapeutic drug (modified gefitinib) 20 3.2.1 Design and synthesis of modified gefitinib 20 3.2.2 Drug efficiency test 23 3.3 Fe3O4@gefitinib 25 3.3.1 Incorporation of Fe3O4 nanoparticles and modified gefitinib 25 3.3.2 In vitro Fe3O4@gefitinib delivery 25 3.3.3 Anneix V and PI staining 26 3.3.4 MR in vitro imaging 28 3.3.5 In vivo imaging on tumor model 28 3.3.6 PET/CT imaging 32 Chapter 4 33 Results and Discussion 33 4.1 Fe3O4 nanoparticles 33 4.1.1 TEM 33 4.1.2 Relaxivity 34 4.1.3 In vitro cytotoxicity evaluation 35 4.1.4 In vivo image enhancement 36 4.1.5 Biodistribution 38 4.2 Drug (modified gefitinib ) 40 4.2.1 Structure confirmation 40 4.2.2 Drug efficiency of modified gefitinib 41 4.3 Fe3O4@gefitinib 42 4.3.1 Conjugation of Fe3O4@gefitinib 42 4.3.2 In vitro Fe3O4@gefitinib delivery 44 4.3.3 Drug efficiency of Fe3O4@gefitinib 45 4.3.4 The cell death induced by Fe3O4@gefitinib 47 4.3.5 Relaxivity 51 4.3.6 In vitro MR imaging of Fe3O4@gefitinib 53 4.3.7 In vivo imaging of Fe3O4@gefitinib delivery 55 Chapter 5 64 Preliminary Study of Treatment Response Evaluation 64 5.1 The MR imaging technique of treatment response 64 5.1.1 Diffusion MRI 64 5.1.2 Dynamic Contrast- Enhanced MRI (DCE MRI) 65 5.2 The Material and methods 66 5.2.1 Diffusion MRI 66 5.2.2 DCE MRI 66 5.3 The results and discussion 67 5.3.1 The change of ADC in Diffusion MRI 67 5.3.2 The change of microvascular structure and permeability in DCE MRI 69 5.4 Conclusion 71 Chapter 6 73 Conclusions and Future work 73 6.1 Conclusion 73 6.2 Future work 73 6.2.1 Chemical process 73 6.2.2 In vitro study 74 6.2.3 In vivo study 75 Reference 77 | |
| dc.language.iso | en | |
| dc.subject | MRI | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | gefitinib | zh_TW |
| dc.subject | 氧化鐵奈米粒子 | zh_TW |
| dc.subject | MRI | en |
| dc.subject | Non-small cell lung cancer | en |
| dc.subject | gefitinib | en |
| dc.subject | iron oxide | en |
| dc.title | 磁振造影技術於診斷及藥物遞送之應用:以氧化鐵奈米粒子應用於非小細胞肺癌為例 | zh_TW |
| dc.title | Development of MR Nanoprobing Technique for Non-Small Cell
Lung Cancer to Achieve Simultaneous Imaging and Drug Delivery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇家豪,黃義侑,何佳安,張允中,袁昂 | |
| dc.subject.keyword | 非小細胞肺癌,gefitinib,氧化鐵奈米粒子,MRI, | zh_TW |
| dc.subject.keyword | Non-small cell lung cancer,gefitinib,iron oxide,MRI, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 61.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
