Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖大修(Ta-Hisu, Liao)
dc.contributor.authorYu-Che Chengen
dc.contributor.author鄭宇哲zh_TW
dc.date.accessioned2021-06-13T05:45:13Z-
dc.date.available2006-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-14
dc.identifier.citation1 Vanecko, S. and Laskowski, M., Sr. (1961) Studies of the specificity of deoxyribonuclease I. II. Hydrolysis of oligonucleotides carrying a monoesterified phosphate on carbon 3'. J Biol Chem 236, 1135-1140
2 Bernardi, G. and Griffe, M. (1964) Studies on acid deoxyribonuclease. Ii. Isolation and characterization of spleen-acid deoxyribonuclease. Biochemistry 20, 1419-1426
3 Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50
4 Shiokawa, D. and Tanuma, S. (1999) DLAD, a novel mammalian divalent cation-independent endonuclease with homology to DNase II. Nucleic Acids Res 27, 4083-4089
5 Paudel, H. K. and Liao, T. H. (1986) Comparison of the three primary structures of deoxyribonuclease isolated from bovine, ovine, and porcine pancreas. Derivation of the amino acid sequence of ovine DNase and revision of the previously published amino acid sequence of bovine DNase. J Biol Chem 261, 16012-16017
6 Davis, R. W., Thomas, M., Cameron, J., St John, T. P., Scherer, S. and Padgett, R. A. (1980) Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol 65, 404-411
7 Cal, S., Tan, K. L., McGregor, A. and Connolly, B. A. (1998) Conversion of bovine pancreatic DNase I to a repair endonuclease with a high selectivity for abasic sites. EMBO J 17, 7128-7138
8 Polzar, B., Zanotti, S., Stephan, H., Rauch, F., Peitsch, M. C., Irmler, M., Tschopp, J. and Mannherz, H. G. (1994) Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol 64, 200-210
9 Falcone, R. A., Jr., Stern, L. E., Kemp, C. J., Shin, C. E., Erwin, C. R. and Warner, B. W. (1999) Apoptosis and the pattern of DNase I expression following massive small bowel resection. J Surg Res 84, 218-222
10 Durward, A., Forte, V. and Shemie, S. D. (2000) Resolution of mucus plugging and atelectasis after intratracheal rhDNase therapy in a mechanically ventilated child with refractory status asthmaticus. Crit Care Med 28, 560-562
11 Prince, W. S., Baker, D. L., Dodge, A. H., Ahmed, A. E., Chestnut, R. W. and Sinicropi, D. V. (1998) Pharmacodynamics of recombinant human DNase I in serum. Clin Exp Immunol 113, 289-296
12 Wiberg, J. S. (1958) On the mechanism of metal activation of deoxyribobuclease I. Arch Biochem Biophys 73, 337-358
13 Liu, Y. F. and Liao, T. H. (1997) Mechanism for inhibition of deoxyribonuclease activity by antisera. J Protein Chem 16, 75-82
14 Tullis, R. and Price, P. A. (1974) The effect of calcium and magnesium on the ultraviolet spectrum of bovine pancreatic deoxyribonuclease A. J Biol Chem 249, 5033-5037
15 Suck, D. (1982) Crystallization and preliminary crystallographic data of bovine pancreatic deoxyribonuclease I. J Mol Biol 162, 511-513
16 Price, P. A., Stein, W. H. and Moore, S. (1969) Effect of divalent cations on the reduction and re-formation of the disulfide bonds of deoxyribonuclease. J Biol Chem 244, 929-932
17 Price, P. A., Liu, T. Y., Stein, W. H. and Moore, S. (1969) Properties of chromatographically purified bovine pancreatic deoxyribonuclease. J Biol Chem 244, 917-923
18 Price, P. A., Moore, S. and Stein, W. H. (1969) Alkylation of a histidine residue at the active site of bovine pancreatic deoxyribonuclease. J Biol Chem 244, 924-928
19 Weston, S. A., Lahm, A. and Suck, D. (1992) X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 A resolution. J Mol Biol 226, 1237-1256
20 Jones, S. J., Worrall, A. F. and Connolly, B. A. (1996) Site-directed mutagenesis of the catalytic residues of bovine pancreatic deoxyribonuclease I. J Mol Biol 264, 1154-1163
21 Doherty, A. J., Worrall, A. F. and Connolly, B. A. (1991) Mutagenesis of the DNA binding residues in bovine pancreatic DNase 1: an investigation into the mechanism of sequence discrimination by a sequence selective nuclease. Nucleic Acids Res 19, 6129-6132
22 Shack, J. (1959) The influence of sodium and magnesium ions on the action of deoxyribonuclease II. J Biol Chem 234, 3003-3006
23 Melzer, M. S. (1969) Influence of carcinogens and group-specific compounds on DNAse II. Can J Biochem 47, 987-989
24 Liao, T. H. (1985) The subunit structure and active site sequence of porcine spleen deoxyribonuclease. J. Biol. Chem. 260, 10708-10713
25 Wang, C. C., Lu, S. C., Chen, H. L. and Liao, T. H. (1998) Porcine spleen deoxyribonuclease II. Covalent structure, cDNA sequence, molecular cloning, and gene expression. J Biol Chem 273, 17192-17198
26 Liao, T. H., Liao, W. C., Chang, H. C. and Lu, K. S. (1989) Deoxyribonuclease II purified from the isolated lysosomes of porcine spleen and from porcine liver homogenates. Comparison with deoxyribonuclease II purified from porcine spleen homogenates. Biochim Biophys Acta 1007, 15-22
27 Howell, D. P., Krieser, R. J., Eastman, A. and Barry, M. A. (2003) Deoxyribonuclease II is a lysosomal barrier to transfection. Mol Ther 8, 957-963
28 McIlroy, D., Tanaka, M., Sakahira, H., Fukuyama, H., Suzuki, M., Yamamura, K., Ohsawa, Y., Uchiyama, Y. and Nagata, S. (2000) An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 14, 549-558
29 Wyllie, A. H., Morris, R. G., Smith, A. L. and Dunlop, D. (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142, 67-77
30 Wolf, B. B., Schuler, M., Echeverri, F. and Green, D. R. (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem 274, 30651-30656
31 Lechardeur, D., Drzymala, L., Sharma, M., Zylka, D., Kinach, R., Pacia, J., Hicks, C., Usmani, N., Rommens, J. M. and Lukacs, G. L. (2000) Determinants of the nuclear localization of the heterodimeric DNA fragmentation factor (ICAD/CAD). J Cell Biol 150, 321-334
32 Nishimoto, S., Kawane, K., Watanabe-Fukunaga, R., Fukuyama, H., Ohsawa, Y., Uchiyama, Y., Hashida, N., Ohguro, N., Tano, Y., Morimoto, T., Fukuda, Y. and Nagata, S. (2003) Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 424, 1071-1074
33 Odaka, C. and Mizuochi, T. (1999) Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells. J Immunol 163, 5346-5352
34 Bernardi, G., Griffe, M. and Appella, E. (1963) Isolation and characterization of spleen acid deoxyribonuclease. Nature 198, 186-187
35 Huang, R. T. (2000) The relevance of posttranslational processing to the activation of porcine spleen deoxyribonuclease II. Master thesis, Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University.
36 Hseuh, C. C. (2000) Investigation of the catalytic roles of the Histidine residues in porcine spleen deoxyribonuclease II by site-directed mutagenesis. Master thesis, Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University.
37 Ho, T. Y., Wu, S. L., Hsiang, C. H., Chang, T. J. and Hsiang, C. Y. (2000) Identification of a DNA-binding domain and an active-site residue of pseudorabies virus DNase. Biochem J 346 Pt 2, 441-445
38 Campbell, R. L. and Petsko, G. A. (1987) Ribonuclease structure and catalysis: crystal structure of sulfate-free native ribonuclease A at 1.5-A resolution. Biochemistry 26, 8579-8584
39 Borah, B., Chen, C. W., Egan, W., Miller, M., Wlodawer, A. and Cohen, J. S. (1985) Nuclear magnetic resonance and neutron diffraction studies of the complex of ribonuclease A with uridine vanadate, a transition-state analogue. Biochemistry 24, 2058-2067
40 http://www.ncbi.nih.gov/BLAST/
41 Sreerama, N. and Woody, R. W. (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci 13, 100-112
42 European Bioinformatics Institute, http://www.ebi.ac.uk/
43 Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59
44 Wang, W. Y., Liaw, S. H. and Liao, T. H. (2000) Cloning and characterization of a novel nuclease from shrimp hepatopancreas, and prediction of its active site. Biochem J 346 Pt 3, 799-804
45 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
46 Merril, C. R., Goldman, D., Sedman, S. A. and Ebert, M. H. (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211, 1437-1438
47 Lacks, S. A., Springhorn, S. S. and Rosenthal, A. L. (1979) Effect of the composition of sodium dodecyl sulfate preparations on the renaturation of enzymes after polyacrylamide gel electrophoresis. Anal Biochem 100, 357-363
48 Sreerama, N. and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287, 252-260
49 Kirsch, J. F. and Toney, M. D. (1990) Bronsted analysis of enzymatic proton transfer reactions through site-directed mutagenesis. Ann N Y Acad Sci 585, 48-57
50 Toney, M. D. and Kirsch, J. F. (1989) Direct Bronsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Science 243, 1485-1488
51 Wickner, S., Maurizi, M. R. and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888-1893
52 Cymerman, I. A., Meiss, G. and Bujnicki, J. M. (2005) DNase II is a member of the phospholipase D superfamily. Bioinformatics 21, 3959-3962
53 Leiros, I., McSweeney, S. and Hough, E. (2004) The reaction mechanism of phospholipase D from Streptomyces sp. strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J Mol Biol 339, 805-820
54 Sidrauski, C., Chapman, R. and Walter, P. (1998) The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol 8, 245-249
55 Schroder, M. and Kaufman, R. J. (2005) The mammalian unfolded protein response. Annu Rev Biochem 74, 739-789
56 Ellgaard, L., Molinari, M. and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway. Science 286, 1882-1888
57 Ellgaard, L. and Helenius, A. (2001) ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13, 431-437
58 Gething, M. J. and Sambrook, J. (1992) Protein folding in the cell. Nature 355, 33-45
59 http://www.invitrogen.com
60 European Bioinformatics Institute. http://www.ebi.ac.uk/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33732-
dc.description.abstract第二型(乙型)去氧核醣核酸酶 (Deoxyribonuclease II, DNase II, EC 3.1.22.1)為一好酸性之非專一性核醣核酸內切酶,其最適作用的 pH 值為 4.7。目前認為第二型去氧核醣核酸酶可能參與水解外來 DNA,並有可能參與細胞凋亡。為研究其酵素催化活性,我們進行一系列之組胺酸定點突變,首先構築了豬脾臟第二型去氧核醣核酸酶 (DNase II) 之各組胺酸 (Histidine) 突變成白胺酸 (Leucine) 之突變株,將這些突變株分別轉染人類胚胎腎臟293T細胞。在轉染48小時之後,可在細胞培養液中得到突變株表現蛋白質,收集培養液之後再對醋酸緩衝液透析,濃縮,經由管柱層析得到純化蛋白質。分析這些蛋白質的比活性,發現H41L, H109L, H206L, H207L, H274L 及H322L 突變蛋白質的比活性分別為 223.2, 286.9, 218.8, 135.0, 178.2, 320.0 U/mg 而野生型DNase II的比活性為320.0 U/mg,由比活性的結果可知上述突變株對於DNase II的催化能力並無影響。
在H115及H297方面,經由圓二色偏光光譜分析發現 H115 及 H297 之白胺酸及丙胺酸突變株之二級結構與野生型並無太大差異;gel-retard 實驗則證實 H115 及 H297 之白胺酸及丙胺酸突變株之DNA結合能力與野生型相比並無不同,可見此二組胺酸之突變株之所以沒有活性,並非突變株改變了酵素結構所致,而是此二組胺酸直接參與了 DNase II 催化水解 DNA。接著我們以化學救法實驗證實 H115及 H297此二組胺酸直接參與第二型去氧核醣核酸酶之催化反應,H115A於外加imidazole 濃度達 100 mM時,DNase II活性回復倍率達 7 倍;而 H297A於外加imidazole 濃度達 100 mM時,DNase II 活性回復倍率達 11 倍,而在由pH 4.0 至 5.6 之間不同 pH 值之下進行化學救援法實驗,發現 H115A 在 pH 4.7 時有最大活性回復倍率,而H297A 則在 pH 4.95 時有最大活性回復倍率,相較於 H115A,H297A之較大活性回復倍率較偏鹼性,顯示偏鹼性之 imidazole 對 H297A 之活性回復較佳,而較偏酸性之imidazole 則對 H115A 之活性回復情形較佳,因此,H115在 DNase II 催化水解 DNA 時為催化酸而H297為催化鹼。在H132的方面,在轉染16小時後,可以在細胞內發現有H132L的表現,但在轉染24小時後, H132L的表現量卻急速下降,另外在細胞表現H132L時添加proteosome抑制劑(Z-Leu-Leu-Leu-al),則可在培養液中偵測到H132L的表現,但不具酵素活性。因此H132L為一不折疊 (unfolded)蛋白質,故會啟動細胞內不折疊蛋白質反應,被細胞內的降解機制所辨識,進而將之降解。另一突變株H132K的表現方面,經由分離細胞胞器實驗發覺 H132K 並沒有被送至溶酶體中而是分佈於內質網 (ER) 或是高基氏體 (Golgi body) 中,共軛焦顯微鏡搭配免疫染色等實驗證實,H132K在細胞內會與內質網標記蛋白質 calnexin之分佈情形相同,因此H132K的表現應是被侷限於內質網中,所以H132K應為錯誤折疊 (misfolded) 蛋白質,因細胞內蛋白質合成品管機制作用之故而無法傳送至細胞質中。另外經由比對七個物種九條DNase II的序列後,發現 H115,H297以及H132在每個DNase II序列中都是保留的,其他的組胺酸殘基則或多或少都有些微差異。可見此三個組胺酸殘基對DNase II而言的確相當重要。
zh_TW
dc.description.abstractDeoxyribonuclease II (DNase II) is an acid endonuclease that is involved in the degradation of exogenous DNA and is important for DNA fragmentation and degradation during cell death. In an effort to understand its catalytic mechanism, we constructed plasmids encoding nine different His-to-Leu mutants of porcine DNase II, and examined the enzyme properties of the mutant proteins. Of the nine mutant proteins, all but H132L were secreted into the growth media of H293Tcells. Six of the mutated DNase II proteins showed enzymatic activities (H41L, H109L, H206L, H207L, H274L and H322L with specific activities of 223.2, 286.9, 218.8, 135.0, 178.2, 320.0 U/mg, respectively), whereas the H115L, H132L and H297L mutant proteins exhibited very little activity. The H115L and H297L mutant proteins were found to undergo correct protein folding, but were inactive. To further examine these mutants, we expressed H115A and H297A DNase II; these mutant proteins were inactive, but their DNase activities could be rescued with imidazole. Addition of 100 mM imidazole increased the DNase II activity of H115A by approximately 7-fold and that of H297A by approximately 11-fold. We next assessed the chemical rescue of H115A and H297A in buffers with different pH values. The pH-activity profiles showed the optimum pH for the imidazole-based restoration of catalytic activity was more acidic for H115A versus H297A, indicating that H115 and H297 are likely to function as a general acid and a general base, respectively, in the catalytic center of the enzyme.
In contrast to the secreted mutants, the H132L mutant protein was found in cell lysates within 16 h after transfection. This protein was inactive, improperly folded and was drastically degraded via the proteosomal pathway after 24 h. The polypeptide of another substitution for H132 with Lys resulted in the misfolded form and retained in endoplasmic reticulum.
In conclusion, we identified the H115 is a general acid whereas H297 is a general base in the catalysis of DNase II. H132 is a key residue for DNase II folding, other His residues are dispensable. The results provide important new insights into the catalytic mechanism and protein folding in DNase II.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:45:13Z (GMT). No. of bitstreams: 1
ntu-95-D88442005-1.pdf: 7411425 bytes, checksum: d080684a7941e857e10f87ed12018ab2 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 研究背景、目的與實驗構想 1
第一節 前言 2
第二節 第一型去氧核醣核酸水解酶 2
第三節 第二型去氧核醣核酸水解酶 4
第四節 其他去氧核醣糖核酸酶 5
第五節 研究緣起 6
第二章 實驗材料及儀器 9
第一節 實驗材料 10
第二節 實驗儀器 12
第三章 實驗方法 14
第一節 定位點突變法及表現質體之建構 15
1. 利用重疊延伸法 (Overlap extension method) 製備定點突變株 15
2. 轉型作用 (Transformation) 18
第二節 重組蛋白之表現與純化 22
1. 以人類 293T 細胞表現重組蛋白 22
2. 表現蛋白純化 23
第三節 去氧核醣核酸水解酶活性分析 24
1. Hyperchromicity 動力學法 24
2. Agar plate 活性分析 24
3. 質體 DNA 切割分析 25
第四節 蛋白質定量分析 25
1. BCA 定量分析 25
2. UV 280 吸光值測量 26
第五節 SDS-PAGE 26
1. SDS-PAGE 膠體製備 26
2. 電極緩衝溶液之製備 27
3. 樣品前處理 27
4. 電泳操作 27
5. 膠片染色 28
第六節 SDS-PAGE 之 DNase 活性染色法 29
1. 活性染色用 SDS-PAGE 膠體之配製 29
第七節 西方墨點分析法及點漬法 31
1. SDS-PAGE 31
2. 半濕式蛋白質轉印法 31
3. 免疫染色 31
4. 點漬法 (Dot blot analysis) 32
第八節 免疫螢光染色及雷射掃瞄光譜共軛焦顯微鏡 32
第九節 圓二色偏光光譜測定 (Circular dichroism, CD) 33
第十節 DNA 與 DNase II之結合情形分析 34
第十一節 分離式梯度離心 (Differential centrifugation) 34
第四章 結果 35
第一節 PCR 定位突變及突變質體的建構 36
第二節 人類293T細胞表現 DNase II 蛋白 37
第三節 仍具有活性之各突變株 37
第四節 H115L 及 H297L 之角色 39
1. 層析法純化 39
2. 圓二色偏光光譜分析 39
3. DNA 結合能力 39
第五節 利用 H115A 及 H297A 進行化學救援法 40
1. 層析法純化 40
2. 圓二色偏光光譜分析 40
3. DNA 結合能力 40
4. 化學救援法 41
5. 最適反應 pH 值測試 41
第六節 H132L 突變株之性質 42
第七節 H132K 突變株之性質 43
第五章 討論 46
第一節 各物種間 DNase II 序列比對 47
第二節 H115 及 H297所扮演的角色 47
第三節 H132 對 pDNase II之重要性 49
1. H132L 的情形 49
2. H132K 的情形 50
第六章 圖表 54
第七章 參考文獻 113
dc.language.isozh-TW
dc.subject蛋白質折疊zh_TW
dc.subject乙型去氧核醣核酸&#37238zh_TW
dc.subject組胺酸zh_TW
dc.subject催化機轉zh_TW
dc.subjectdeoxyribonuclease IIen
dc.subjectprotein foldingen
dc.subjectcatalytic mechanismen
dc.subjecthistidineen
dc.title第二型去氧核醣核酸酶中各組胺酸殘基之功能zh_TW
dc.titleThe Roles of Histidine Residues in Deoxyribonuclease IIen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee張明富,呂紹俊,魏耀揮,張固剛,莊榮輝
dc.subject.keyword乙型去氧核醣核酸&#37238,組胺酸,催化機轉,蛋白質折疊,zh_TW
dc.subject.keyworddeoxyribonuclease II,histidine,catalytic mechanism,protein folding,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2006-07-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
7.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved