請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33690完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | I-Fan Lin | en |
| dc.contributor.author | 林以凡 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:44:38Z | - |
| dc.date.available | 2006-07-18 | |
| dc.date.copyright | 2006-07-18 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-13 | |
| dc.identifier.citation | [1] 楊景槱, '導引飛彈簡介,' 科學月刊 SCIENCE MONTHLY, vol. 117, 1979.
[2] S. A. Murtaugh and H. E. Criel, 'Fundamentals of Proportional Navigation,' IEEE Spectrum, vol. 3, pp. 75-85, 1966. [3] M. Guelman, 'Closed-Form Solution of True Proportional Navigation,' IEEE Transactions on Aerospace and Electronic Systems, vol. 12, pp. 472-482, 1976. [4] C. D. Yang, F. B. Yeh, and J. H. Chen, 'The Closed-Form Solution of Generalized Proportional Navigation,' Journal of Guidance, Control, and Dynamics, vol. 10, pp. 216-218, 1987. [5] C. D. Yang and F. B. Yeh, 'Closed-Form Solution for a Class of Guidance Laws,' Journal of Guidance, Control, and Dynamics, vol. 10, pp. 412-415, 1987. [6] U. S. Shukla and P. R. Mahapatra, 'The Proportional Navigation Dilemma - Pure or True?,' IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 382-392, 1990. [7] E. Duflos, P. Penel, and P. Vanheeghe, '3D guidance law modeling,' IEEE Transactions on Aerospace and Electronic Systems, vol. 35, pp. 72-83, 1999. [8] E. Duflos, P. Penel, E. Druon, V. Boulet, and P. VanHeeghe, 'General 3D guidance law modeling,' IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2013-2018, 1995. [9] J. Shinar and T. Shima, 'A game theoretical interceptor guidance law for ballistic missile defence,' Conference on Decision and Control, vol. 3, pp. 2780-2785, 1996. [10] C. L. Lin, H. Z. Hung, Y. Y. Chen, and B. S. Chen, 'Development of an integrated fuzzy-logic-based missile guidance law against high speed target,' IEEE Transactions on Fuzzy Systems, vol. 12, pp. 157-169, 2004. [11] C. L. Lin and Y. Y. Chen, 'Design of fuzzy logic guidance law against high-speed target,' Journal of Guidance, Control, and Dynamics, vol. 23, pp. 17-25, 2000. [12] C. Y. Kuo and Y. C. Chiou, 'Geometric analysis of missile guidance command,' IEE Proc.-Control Theory Appl., vol. 147, pp. 205-211, 2000. [13] C. Y. Kuo, D. Soetanto, and C. Ying-Chwan, 'Geometric analysis of flight control command for tactical missile guidance,' IEEE Transactions on Control Systems Technology, vol. 9, No. 2, pp. 234-243, 2001. [14] S. Eun-Jung and T. Min-Jea, 'Three-dimensional midcourse guidance using neural networks for interception of ballistic targets,' IEEE Transactions on Aerospace and Electronic Systems, vol. 38, pp. 404-414, 2002. [15] J. Moon, K. Kim, and Y. Kim, 'Design of missile guidance law via variable structure control,' Journal of Guidance, Control, and Dynamics, vol. 24, pp. 659-664, 2001. [16] K. R. Babu, I. G. Sarma, and K. N. Swamy, 'Two robust homing missile guidance laws based on sliding mode control theory,' Aerospace and Electronics Conference, pp. 540-547, 1994. [17] Y. Pin-Jar, 'Optimal guidance of proportional navigation,' IEEE Transactions on Aerospace and Electronic Systems, vol. 33, pp. 1007-1012, 1997. [18] C. D. Yang and C. C. Yang, 'Optimal pure proportional navigation for maneuvering targets,' IEEE Transactions on Aerospace and Electronic Systems, vol. 33, pp. 949-957, 1997. [19] B. Wie, H. Weiss, and A. Arapostathis, 'Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations,' Journal of Guidance, Control, and Dynamics, vol. 12, pp. 375-380, 1989. [20] F. K. Yeh, H. H. Chine, and L. C. Fu, 'Nonlinear optimal sliding mode midcourse controller with thrust vector control,' American Control Conference, vol. 2, pp. 1348-1353, 2002. [21] Y. H. OH, 'Three dimensional interpolation method for missile aerodynamics' presented at AIAA Aerospace Sciences Meeting, 27th, Reno, NV, 1989. [22] W. Fen, A. Packard, and G. Balas, 'LPV control design for pitch-axis missile autopilots,' IEEE Conference on Decision and Control, vol. 1, pp. 188-193, 1995. [23] R. Eberhardt and K. A. Wise, 'Automated gain schedules for missile autopilots using robustness theory,' IEEE Conference on Control Applications, pp. 243-250, 1992. [24] D. P. White, J. G. Wozniak, and D. A. Lawrence, 'Missile autopilot design using a gain scheduling technique,' Southeastern Symposium on System Theory, pp. 606-610, 1994. [25] D. J. Leith and W. E. Leithead, 'Gain-scheduled control of a skid-to-turn missile: relaxing slow variation requirements by velocity-based design,' American Control Conference, vol. 1, pp. 500-505, 2001. [26] L. Ching-Fang, J. R. Cloutier, and J. H. Evers, 'Robust bank-to-turn missile autopilot design,' American Control Conference, vol. 3, pp. 1941-1945, 1995. [27] L. Bruyere, A. Tsourdos, R. Zbikowski, and B. A. White, 'Robust performance study for lateral autopilot of a quasi-linear parameter-varying missile,' American Control Conference, vol. 1, pp. 226-231, 2002. [28] E. Devaud, J. P. Harcaut, and H. Siguerdidjane, 'Three-axes missile autopilot design: From linear to nonlinear control strategies,' Journal of Guidance Control and Dynamics, vol. 24, pp. 64-71, 2001. [29] 錢宣浩, 'A Midcourse Guidance Law with Thrust Vector Control,' Department of Electrical Engineering, National Taiwan University, Master Thesis, 2000. [30] 鄭凱元, 'Rocket Controller Design with TVC and DCS,' Department of Electrical Engineering, National Taiwan University, Master Thesis, 2002. [31] 葉富光, 'Variable Structure Theory Based Integrated Guidance/Autopilot Design for Maneuvering Flying Vehicles,' Department of Electrical Engineering, National Taiwan University, Ph.D. Dissertation, 2003. [32] 鄭家豪, 'Novel Guidance Law and Autopilot Designs for Intercepting Missiles and Launch Rockets with TVC and DCS,' Department of Electrical Engineering, National Taiwan University, Master Thesis, 2004. [33] 葉俊文, 'Adaptive controller Design for Launch Rockets with TVC and DCS,' Department of Electrical Engineering, National Taiwan University, Master Thesis, 2005. [34] 楊憲東, 自動飛行控制原理與實務, 1st ed: 全華科技圖書股份有限公司, 2002. [35] P. Zarchan, Tactical and Strategic Missile Guidance, vol. 199, 4th ed: American Institute of Aeronautics and Astronautics, Inc, 2002. [36] R. C. Hibbeler, Engineering Mechanics Dynamics, 8th ed: Prentice-Hall, Inc., 1997. [37] J. R. Wertz, Spacecraft Attitude Determination and Control: Kluwer Academic Publishers, 1978. [38] H. Sira-Ramírez, 'On the dynamical sliding mode control of nonlinear systems,' International Journal of Control, vol. 57, No. 5, pp. 1039-1061, 1993. [39] H. K. Khalil, Nonlinear Systems, 3rd ed: Prentice-hall. Inc., 2000. [40] M. C. Mickle, R. Huang, and J. J. Zhu, 'Unstable, nonminimum phase, nonlinear tracking by trajectory linearization control,' IEEE International Conference on Control Applications, vol. 1, pp. 812-818, 2004. [41] Z. Hongchao, G. Wenjin, H. Yunan, and P. Changpeng, 'Second-order sliding mode control for aerodynamic missiles using backstepping design,' Fifth World Congress on Intelligent Control and Automation, vol. 6, pp. 5471-5474, 2004. [42] K. Ki-Seok and K. Youdan, 'Robust backstepping control for slew maneuver using nonlinear tracking function,' IEEE Transactions on Control Systems Technology, vol. 11, pp. 822-829, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33690 | - |
| dc.description.abstract | 飛行器的控制隨著時代的進步,日趨受到重視,而飛行控制器的研究也一直都是非常重要的一個課題。我們將討論飛行器中的決策部份:導引法則和自動駕駛儀,而其中攔截飛彈是我們想研究的對象。本論文使用無翼面的飛行器使得受到空氣動力學的非線性效應之影響可以減至最少。我們提出一個具有多推力向量控制 (TVC) 及側噴流控制系統 (DCS) 的強健自動駕駛儀系統,並利用背向步進控制 (backstepping control) 來進行其設計,如此我們可以將飛行器的活動範圍從大氣層內延伸至外太空。至於飛彈的導引法則,我們使用動態順滑模態 (Dynamic Sliding Mode) 來消弭切跳現象 (chattering phenomenon)並減少飛彈與目標物的誤差距離。導引法則與自動駕駛儀的整合性系統參數設計方法也被提出。整合系統及各個子系統的穩定性皆由李奧普諾夫定理 (Lyapunov stability theory) 加以分析證明。為了驗證所設計之控制器的性能,我們做了各式各樣的模擬,並包含了空氣動力學的模型,而這些模擬證實了攔截飛彈的導引法則與自動駕駛儀整合系統的可行性。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a highly maneuverable autopilot system based on multiple Thrust Vector Control (TVC) mechanisms and Divert Control System (DCS) in order to extend the maneuvering range of an airframe from the place with aerodynamic influence to the place without. The strategy of the cooperation of multiple TVC mechanisms and DCS is discussed in detail. The decision part in missiles: guidance law (GL) and autopilot is presented. The GL is designed with dynamic sliding mode control in order to eliminate the chattering phenomenon caused by sliding mode control and to minimize the distance between the missile and the target without the estimation of interception time. The autopilot controller based on quaternion representation is designed using backstepping control technique to execute the attitude command. The stability of the integrated guidance/autopilot (G/A) system is analyzed by Lyapunov stability theory. In addition, we advocate a wingless missile to reduce the nonlinear effect from the aerodynamics as much as possible. Extensive simulations including aerodynamic model are finally demonstrated to verify the validity of the proposed integrated G/A systems of missiles incorporating the highly maneuverable inputs. Furthermore, we compare the performance of the simulations with that from the previous works of our research group. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:44:38Z (GMT). No. of bitstreams: 1 ntu-95-R93921008-1.pdf: 1652872 bytes, checksum: 68f3f8619c89aae941c53bddb333853d (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract I
Table of Contents III List of Figures V List of Tables VII Chapter 1 Introduction 1 1.1 Motivation of Research 1 1.2 Related Works 3 1.3 Contribution of This Thesis 5 1.4 Organization of This Thesis 6 Chapter 2 Preliminaries and Problem Formulation 7 2.1 Airframe and Actuators 7 2.1.1 Thrust Vector Control and Divert Control System 8 2.1.2 Airframe Modeling 9 2.2 Aerodynamics 12 2.3 Fundamentals of Missile Guidance 16 2.3.1 Proportional Navigation 16 2.3.2 Zero-Effort-Miss Analysis 19 2.4 Mathematical Background 20 2.4.1 Dynamics in Changing Coordinate 20 2.4.2 Attitude Representations 23 2.5 Problem Description 29 Chapter 3 Missile Controller Design 31 3.1 Introduction 31 3.2 Guidance System Design 32 3.2.1 Sliding Mode Method 35 3.2.2 Dynamic Sliding Mode Method 36 3.3 Autopilot System Design 39 3.4 Actuators Cooperation Strategy 45 Chapter 4 Integrated Guidance/Autopilot System Stability Analysis 49 4.1 Introduction 49 4.2 Integrated Guidance/Autopilot Analysis of Airframe 50 Chapter 5 Simulation and Analysis 59 5.1 Missile Integrated G/A System 59 5.1.1 High Altitude Intercepting 59 5.1.2 Low Altitude Intercepting 71 Chapter 6 Conclusion 83 References 85 | |
| dc.language.iso | en | |
| dc.subject | 李奧普諾夫定理 | zh_TW |
| dc.subject | 側噴流控制系統 | zh_TW |
| dc.subject | 推力向量控制 | zh_TW |
| dc.subject | 背向步進控制 | zh_TW |
| dc.subject | 動態順滑模態 | zh_TW |
| dc.subject | Divert Control System | en |
| dc.subject | Lyapunov stability theory | en |
| dc.subject | Thrust Vector Control | en |
| dc.subject | dynamic sliding mode control | en |
| dc.subject | backstepping control | en |
| dc.title | 針對具高機動性自動駕駛系統之攔截飛彈控制器設計 | zh_TW |
| dc.title | Novel Control Design for Intercepting Missiles with Highly Maneuverable Autopilot System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馮蟻剛,陳博現,簡江儒,練光祐 | |
| dc.subject.keyword | 背向步進控制,動態順滑模態,推力向量控制,側噴流控制系統,李奧普諾夫定理, | zh_TW |
| dc.subject.keyword | backstepping control,dynamic sliding mode control,Thrust Vector Control,Divert Control System,Lyapunov stability theory, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
