請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33669完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | |
| dc.contributor.author | Ming-Kun Li | en |
| dc.contributor.author | 李明坤 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:44:24Z | - |
| dc.date.available | 2007-07-24 | |
| dc.date.copyright | 2006-07-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-14 | |
| dc.identifier.citation | 1.黃秉鈞教授,「高亮度LED照明技術發展與太陽能照明應用」,國立台灣大學機械系新能源中心,民國94年8月1日(2005)。
2.Harper, D. R. and Brown, W. B., “Mathematical Equations for Heat Conduction in the Fins if Air Cooled Engines,” NACA Report No.158, 1922. 3.Murray, M. N., “Heat Transfer Through an Annular Disk or Fin of Uniform Thickness,” Trans. ASME, J. Applied Mech., 60, A78, 1938. 4.Bar-Cohen, A. and Rohsenow, W. M., ”Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates,” Transactions of the ASME, Vol. 106, February 1984. 5.Robert S. Metz, E. Setauket, N.Y., Dec. 22, 1992, “Heat-Dissipating Method and Device for LED Display,” United States Patent 5,173,839. 6.Peter A. Hochstein, Troy, Mich., Apr. 4, 2000, “LED Lamp Assembly with Means to Conduct Heat Away from the LEDs,” United States Patent 6,045,240. 7.Grover, G. M., “US Patent No.3229759,” 1963. 8.http://www.fujikura.co.jp/news/0310/enews2.html 9.http://www.thermacore.com/papers.htm 10.Ku, J.,” Operating Characteristics of Loop Heat Pipes,” 29th International Conference on Environmental System, July 12-15, 1999. 11.Baumann, J., Cullimore, B., Ambrose, J., Buchan, E., Yendler, B.,” A Methodology for Enveloping Reliable Start-Up of LHPs,” American Institute of Aeronautics and Astronautics, pp.1-9, 2000. 12.Muraoka, I., Ramos, F.M., Vlassov, V.V.,” Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser,” International Journal of Heat and Mass Transfer 44(2001) 2287-2297 13.Theofanous, T., Dinh, N., Nourgaliev, R.,” Thermal Packaging Solution for High Power Density Multi-chip Module”, University of California-Santa Bararla(ucsb), Submission Date:02 June 2000. 14.Lin, J.C., Wu, J.C., Yen, C.T., Yang, C.Y.,” Fabrication and Performance Analysis of Metallic Micro Heat Spreader for CPU”, 13th International Heat Pipe Conference (13th IHPC), Shanghai, China, September 21-25, 2004. 15.Zhu, N., Vafaj, K.,” Analytical modeling of the startup characteristics of asymmetrical flat-plate and disk-shaped heat pipes”, Int. J Heat Mass Transfer, Vol.41, No.17, pp.2619-2637, 1998. 16.Zhu, N., Vafaj, K.,” The effects of liquid-vapor coupling and non-Darcian transport on asymmetrical disk-shaped heat pipes”, Int. J Heat Mass Transfer, Vol.39, No.10, pp.2095-2113, 1996. 17.Zhu, N., Vafaj, K.,” Numerical and analytical investigation of vapor flow in a disk-shaped heat pipe incorporating secondary flow”, Int. J Heat Mass Transfer, Vol.40, No.12, pp.2887-2900, 1997. 18.Wang, Y., Vafaj, K.,” An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe”, International Journal of Heat and Mass Transfer 43 (2000) 2657-2668. 19.Tan, B.K., Huang, X.Y., Wong, T.N., Ooi, K.T.,” A study of multiple heat sources on a flat plate heat pipe using a point source approach”, International Journal of Heat and Mass Transfer 43(2000) 3755-3764. 20.Xuan, Y., Hong, Y., Li, Q.,” Investigation on transient behaviors of flat plate heat pipes”, Experimental Thermal and Fluid Science 28(2004) 249~255. 21.Mochizuki, M., Nguyen, T., Mashiko, K., Staito, Y., Nguyen, T., Wuttijumnong, V. and Wu, X.,” Practical Application of Heat Pipe and Vapor Chamber for Cooling High Performance Personal Computer”, 13th International Heat Pipe Conference (13th IHPC), Shanghai, China, September 21-25, 2004. 22.Levy, S.,” Generalized Correlation of Boling Heat Transfer,” Journal of Heat Transfer, February 37-42, 1959. 23.Engelberg-forster, K., and GREIF, R., “Heat Transfer to a Boiling Liquid – Mechanism and Correlation”, Journal of Heat Transfer, February 43-53, 1959. 24.Joseph, M.W., and Chang, W.S.,” EFFECTIVE THERMAL CONDUCTIVITY OF SINTER METAL FIBERS”, IEEE 1989. 25.Tavman, I.H., “EFFECTIVE THERMAL CONDUCTIVITY OF GRANULAR POROUS MATERIALS”, Int. Comm. Heat Mass Transfer, Vol. 23, No. 2, pp.169-176, 1996. 26.Carson, J.K., Lovatt, S.J., Tanner, D.J., Cleland, A.C., “An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations”, international Journal of Refrigeration 26 (2003) 873-880. 27.Lee, S.L. and Yang, J.H.,” Modeling of effective thermal conductivity for a non-homogeneous anisotropic porous medium”, Int. J. Heat Mass Transfer, Vol.41, Nos6-7, pp.931-937, 1998. 28.Belova, I.V., Murch, G.E., “Monte Carlo simulation of the effective thermal conductivity in two-phase material”, Journal of Materials Processing Technology 153—154(2204)741-745. 29.Wei, J., Chan, A., and Copeland, D., “Measurement of Vapor Chamber Performance” 19th IEEE SEMI-THERMAL Symposium, 2003. 30.Sauciuc, I., Chrysler, G., Mahajan, R. and Prasher, R., “Spreading in the Heat Sink Base: Phase Change System or Solid Metals??,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 25, NO.4, DECEMBER 2002. 31.Webb, R.L., “Nucleate Boiling on Porous Coated Surfaces,” heat transfer engineering, Vol. 4, nos. 3-4, 1983 32.Czikk, A.M. and O’Neill, P.S.,” Correlation of Nucleate Boiling from Porous Metal Films,” in advances in Enhanced Heat Transfer, J.M. Chenoweth, J. Kaellis, J.W. Michel, and S. Shenkman, Eds., ASME, New York, pp.103-113, 1979. 33.Hiemenz, P.C., “ Principles of Colloid and Surface Chemistry, 2nd edition,” Marcel Inc., New York, 1986, pp. 302. 34.Von Mists, R. and Fredricks, K.O., “Fluid Dynamics Springer-Verlag,” New York, 1971. 35.Muscat, D. and Drew, R.A.L.,” Modeling the Infiltration Kinetics of Molten Aluminum into Porous Titalium Carbide,” Metallurgy and Material Transactions A, Vol.25A, pp.2357-2370, 1994. 36.Semlak , K.A. and Rhines, F.N.,” AIME Trans.,” Vol.212,pp.324-31, 1958. 37.Marcus, B.D., “Theory and Design of Variable Conductance Heat Pipes,” Report No. NASA CR, 2018, Washington, D.C. April, 1972. 38.Maxcell, J.C., “A Treatise on Electricity and Magnetism,” 3rd. Ed. 1, Ch.9 p.1, Dover, New York (1954). 39.Woodside, W. and Messmer, J.H., “Eeffective Thermal Conductivity of Quartz Sands and Sandstones,” Appl, J., Phys. 32, 1688, 1961. 40.Krupiczka, R., Source: Int. Chem. Eng. 7, 122, 1967. 41.Zehner, P. and Schlünder, E.U.,” Thermal Conductivity of Granular Materials at Moderate Temperatures,” Source: Chem-Ing-Tech, v 42, n 14, July, 1970, p 933-41. 42.Chi, S.W., “Heat Pipe Theory and Practice”, McGraw-Hill, New York, 1976. 43.Lee, S., “Calculating Spreading Resistance in Heat Sink, Electronics Cooling”, Vol.4, No.1, pp.30-33, January 1998. 44.Ake Malhammar, “A Bessel Function Solution for the Temperature Distribution on Convection Cooled Plates with Discrete Heat Sources”, 2002, http://www.coolingzone.com/index.html. 45.Handbook of HEAT TRANSFER, Third Edition, p4.13-p4.19. 46.江沅晉,「微結構蒸氣腔體之硏究與電子散熱應用」,博士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)。 47.邱治凱,「毛細熱板性能之研究」,碩士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33669 | - |
| dc.description.abstract | 近幾年來,LED對於照明之應用日趨重要,而其中急需解決的便是LED散熱問題,由於LED具有省電及壽命長之特性,若能有效改善其散熱問題,將能延長LED的使用壽命、減少能源的損耗。蒸氣腔體乃是在操作時產生沸騰的機制,使熱量能迅速且均勻的擴散來達到散熱和均溫的效果。本研究為證明蒸氣腔體散熱模組能有效解決LED散熱問題,因此設計一套完整的實驗方法,研究自然對流散熱對於蒸氣腔體散熱模組的性能影響,以提供未來對於蒸氣腔體散熱模組進一步的分析與改善。由實驗結果顯示,LED蒸氣腔體散熱模組在90度放置下會有較佳之性能表現。而且蒸氣腔體的擴散熱阻(Spreading Resistance)可以比銅塊及鋁塊降低約20%。且相較於銅塊及鋁塊散熱模組,總熱阻約低13%。雖然由實驗看來,鰭片對流熱阻為影響系統總熱阻之主要因素(約佔70~90%),但此部份可藉由鰭片尺寸最佳化來加以改善,使蒸氣腔體散熱模組應用於LED散熱上有更佳的效果。 | zh_TW |
| dc.description.abstract | In recent years, LED is becoming more important to the lighting application. And the LED heat dissipation problem is badly in need of solution among them. LED has the characteristic of electricity and longe-lived. If its heat dissipation problem can improve effectively, we can lengthen the service life of LED and loss of the reduction energy. The boiling mechanism appears within the vapor chamber while operating, at the same time it can dissipate heat rapidly and also spread heat evenly to get the result of uniform temperature. In order to prove that the vapor chamber cooling module can solve LED heat dissipation problem effectively in the paper, so there is a set of detailed experiment methods. Study the influence on performance of natural convection heat transfer in order to offer the analysis and improvement of the vapor chamber cooling module in the future. The experimental result shows that the performance of the vapor chamber cooling module applied in LED will be best under 90 degrees. The spreading resistance of the vapor chamber cooling module is lower by about 20% than copper. Seemed by the experiment, natural convection resistance is the principal factor which influences the total resistance of the systwm (about 70% to 90%). But this part can be improving by the optimization of the size of the fin. And it makes that the vapor chamber cooling module applied in LED has the best result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:44:24Z (GMT). No. of bitstreams: 1 ntu-95-R93522112-1.pdf: 1296283 bytes, checksum: 9cd751c65d5a69ca894b8debf0d6700d (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論 1 1.1 前言 1 1.2研究動機與目的 2 1.3文獻回顧 3 第二章 基本原理與理論模式 10 2.1蒸氣腔體基本概念 10 2.1.1 多孔隙表面沸騰機制 10 2.1.2 毛細現象 13 2.1.3 毛細構造等效熱傳導係數 16 2.2 蒸氣腔體系統原理與限制 19 2.2.1 蒸氣腔體操作原理 19 2.2.2 蒸氣腔體操作極限 20 第三章 蒸氣腔體於自然對流之散熱性能分析 26 3.1 散熱模組熱阻模型建立 26 3.1.1 熱阻分析模式 26 3.1.2 界面熱阻 27 3.1.3 蒸氣腔體熱阻 29 3.1.4 自然對流熱阻 31 3.2 實驗設備與研究方法 32 3.2.1 實驗系統 33 3.2.2 實驗設備 35 3.2.3 實驗參數 36 3.2.4 實驗步驟 38 3.3 結果與討論 38 3.3.1 熱源面積大小對系統性能的影響 38 3.3.2 蒸氣腔體與銅板之比較 40 第四章 LED蒸氣腔體散熱模組之散熱性能分析 59 4.1 散熱模組熱阻模型建立 59 4.1.1 熱阻分析模式 59 4.1.2 封裝板熱阻及界面熱阻 61 4.1.3 擴散熱阻 63 4.1.4 蒸氣腔體熱阻 64 4.1.5 自然對流熱阻 66 4.2 實驗設備與研究方法 67 4.2.1 實驗系統 67 4.2.2 實驗設備 68 4.2.3 實驗參數 69 4.2.4 實驗步驟 71 4.3 結果與討論 72 4.3.1 不同擺設角度對系統性能的影響 72 4.3.2 不同散熱模組之比較 75 第五章 結論與建議 92 5.1 結論 92 5.2 建議 94 參考文獻 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 擴散熱阻 | zh_TW |
| dc.subject | 自然對流 | zh_TW |
| dc.subject | 蒸氣腔體 | zh_TW |
| dc.subject | LED | zh_TW |
| dc.subject | Spreading resistance | en |
| dc.subject | Natural convection | en |
| dc.subject | Vapor chamber | en |
| dc.subject | LED | en |
| dc.title | LED蒸氣腔體散熱模組 | zh_TW |
| dc.title | Investigation and Analysis of the Vapor Chamber Cooling module Applied in LED | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳輝俊,林書如,江沅晉 | |
| dc.subject.keyword | LED,蒸氣腔體,擴散熱阻,自然對流, | zh_TW |
| dc.subject.keyword | LED,Vapor chamber,Spreading resistance,Natural convection, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
