請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33647完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建國 | |
| dc.contributor.author | I-Ting Chen | en |
| dc.contributor.author | 陳羿婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:44:09Z | - |
| dc.date.available | 2006-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-15 | |
| dc.identifier.citation | Abell, K., Bilancio, A., Clarkson, R. W., Tiffen, P. G., Altaparmakov, A. I., Burdon, T. G., Asano, T., Vanhaesebroeck, B., and Watson, C. J. (2005). Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol 7, 392-398.
Alonzi, T., Maritano, D., Gorgoni, B., Rizzuto, G., Libert, C., and Poli, V. (2001). Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol Cell Biol 21, 1621-1632. Baumann, H. and Gauldie, J. (1994). The acute phase response. Immunol Today 15, 74-80. Bonder, C. S., Ajuebor, M. N., Zbytnuik, L. D., Kubes, P., and Swain, M. G. (2004). Essential role for neutrophil recruitment to the liver in concanavalin A-induced hepatitis. J Immunol 172, 45-53 Chang, K. M., Thimme, R., Melpolder, J. J., Oldach, D., Pemberton, J., Moorhead-Loudis, J., McHutchison, J. G., Alter, H. J., and Chisari, F. V. (2001). Differential CD4(+) and CD8(+) T-cell responsiveness in hepatitis C virus infection. Hepatology 33, 267-276. Crispe. I. N. (2003). Hepatic T cells and liver tolerance. Nat Rev Immunol 3, 51-62 Cressman, D. E., Greenbaum, L. E., DeAngelis, R. A., Ciliberto, G., Furth, E. E., Poli, V., and Taub, R. (1996). Liver Failure and Defective Hepatocyte Regeneration in Interleukin-6-Deficient Mice. Science 274, 1379-1383. Croker, B. A., Krebs, D. L., Zhang, J. G., Wormald, S., Willson, T. A., Stanley, E. G., Robb, L., Greenhaigh, C. J., Forster, I., Clausen, B. E. (2003). SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4, 540-545. Derouet, D., Rousseau, F., Alfonsi, F., Froger, J., Hermann, J., Barbier, F., Perret, D., Diveu, C., Guillet, C., Preisser, L., Dumont, A., Barbado, M., Morel, A., deLapeyrière, O., Gascan, H and Chevalier, S. (2004). Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci USA 101, 4827-4832. Dillon, S. R., Sprecher, C., Hammond, A., Bilsborough, J., Rosenfeld-Franklin, M., Presnell, S. R., Haugen, H. S., Maurer, M., Harder, B., Johnston, J., Bort, S., Mudri, S., Kuijper, J. L., Bukowski, T., Shea, P., Dong, D. L., Dasovich, M., Grant, F. J., Lockwood, L., Levin, S. D., LeCiel, C., Waggie, K., Day, H., Topouzis, S., Kramer, J., Kuestner, R., Chen, Z., Foster, D., Parrish-Novak J. and Gross, J. A. (2004). Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5, 752-760. Durbin, J. E., Hackenmiller, R., Simon, M. C., and Levy, D. E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450. Fujimoto, M. and Naka, T. (2003). Regulation of cytokine signaling by SOCS family molecules. Trends Immunol 24, 659-666. Fukada, T., Hibi, M., Yamanaka, Y., Takahashi-Tezuka, M., Fujitani, Y., Yamaguchi, T., Nakajima, K., and Hirano, T. (1996). Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5, 449-460. Gantner, F., Leist, M., Lohse, A. W., Germann, P. G., and Tiegs, G. (1995). Concanavalin A-induced T-cell-mediated hepatic injury in mice : the role of tumor necrosis factor. Hepatology 21, 190-198. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schapter, F., and Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334, 297-314. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., and Mills, G. B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev drug disc 4, 988-1004. Hodge, D. R., Hurt, E. M., and Farrar, W. L. (2005). The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41, 2502-2512. Hong, F., Jaruga, B., Kim, W. H., Radaeva, S., El-Assal, O. N., Tian, Z., Nguyen, V. A., and Gao, B. (2002). Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS. J Clin Invest 110, 1503-1513. Hong, F., Kim, W. H., Tian, Z., Jaruga, B., Ishac, E., Shen, X., and Gao, B. (2002). Elevated interleukin-6 during ethanol consumption acts as a potential endogenous protective cytokine against ethanol-induced apoptosis in the liver: involvement of induction of Bcl-2 and Bcl-x(L) proteins. Oncogene 21, 32-43. Inoue, H., W. Ogawa, W., Ozaki, M., Haga, S., Matsumoto, M., Furukawa, K., Hashimoto, N., Kido, Y., Mori, T., Sakaue, H., Teshigawara, K., Jin, S., Iguchi, H., Hiramatsu, R., LeRoith, D., Takeda, K., Akira, S., and Kasuga, M. (2004). Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med 10, 168-174. Inukai, K., Funaki, M., Ogihara, T., Katagiri, H., Kanda, A., Anai, M., Fukushima, Y., Hosaka, T., Suzuki, M., Shin, B. C., Takata, K., Yazaki, Y., Kikuchi, M., Oka, Y., and Asano, T. (1997). p85α gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50α, p55α and p85α, with different PI 3-kinase activity elevating response to insulin. J Biol Chem 272, 7873-7882. Jaruga, B., Hong, F., Sun, R., Radaeva, S., and Gao B. (2003). Critical role of IL4/STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 171, 3233-3244 Jerrells, T. R. (2002). Role of activated CD8+ T cells in the initiation and continuation of hepatic damage. Alcohol 27, 47-52. Kamimura, D., Ishihara, K., and Hirano, T. (2003). IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149, 1-38. Kamiya, A., Kamiya, A., Kinoshita, T., Ito, Y., Matsui, T., Morikawa, Y., Senba, E., Nakashima, K., Taga, T., Yoshida, K., Kishimoto, T., and Miyajima, A. (1999). Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18, 2127-2136. Kaneko, Y., Harada, M., Kawano, T., Yamashita, M., Shibata, Y., Gejyo, F., Nakayama, T., and Taniguchi, M. (2000). Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 191, 105-114. Kato, M., Ikeda, N., Matsushita, E., Kaneko. S., and Kobayashi, K. (2001). Involvement of IL-10, an anti-inflammatory cytokine in murine liver injury induced by Concanavalin A. Hepatol Res 20, 232-243 Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C. W. (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1-24. Kimura, A., Naka, T., Nagata, S., Kawase, I., and Kishimoto, T. (2004). SOCS-1 suppresses TNF-alpha-induced apoptosis through the regulation of Jak activation. Inter Immunol 16, 991-999. Kishimoto, T. (2005). Interleukin-6: from basic science to medicine-40 years in immunology. Annu Rev Immunol 23, 1-21. Klein, C., Wustefeld, T., Assmus, U., Roskams, T., Rose-John, S., Muller, M., Manns, M. P., Ernst, M., and Trautwein, C. (2005). The IL-6gp130-STAT3 pathways in hepatocytes triggers liver protection in T cell-mediated liver injury. J Clin Invest 115, 860-869. Krebs, D. L., and Hilton, D. J. (2001). SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378-387. Kuo, M. L., Chuang, S. E., Lin, M. T., and Yang, S. Y. (2001). The involvement of PI 3-K/Akt-dependent up-regulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleikin-6. Oncogene 20, 677-685. Lee, C. K., Raz, R., Gimeno, R., Gertner, R., Wistinghausen, B., Takeshita, K., DePinho, R. A., and Levy, D. E. (2002). STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63-72. Levy, D. E. and Darnell, J. E. (2002). STATS: TRANSCRIPTIONAL CONTROL AND BIOLOGICAL IMPACT. Nat Rev Mol Cell Biol 3, 651-662. Louis, H., Le Moine, A., Flamand, V., Nagy, N., Quertinmont, E., Paulart, F., Abramonicz, D., Le Moine, O., Goldman, M., and Deviere, J. (2002). Critical role of interleukin 5 and eosinophils in concanavalin A-induced hepatitis in mice. Gastroenterology 122, 2001-2010. Mizuhara, H., O'Neill, E., Seki, N., Ogawa, T., Kusunoki, C., Otsuka, K., Satoh, S., Niwa, M., Senoh, H., and Fujiwara, H. (1994). T cell activation-associated hepatic injury: mediation by tumor necrosis factors and production by interleukin 6. J Exp Med 179, 1529-1537. Naka, T., Tsutsui, H., Fujimoto, M., Kawazoe, Y., Kohzaki, H., Morita, Y., Nakagawa, R., Narazaki, M., Adachi, K., Yoshimoto, T., Nakanishi, K., and Kishimoto, T. (2001). SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-gamma and IL-4 signaling in vivo. Immunity 14, 535-545. Pflanz, S., Hibbert, L., Mattson, J., Rosales, R., Vaisberg, E., Bazan, J. F., Phillips, J. H., McClanahan, T. K., Malefyt, R. W., and Kastelein, R. A. (2004). WSX-1 and Glycoprotein 130 Constitute a Signal-Transducing Receptor for IL-27. J Immunol 172, 2225-2231. Radaeva, S., Jaruga, B., Hong, F., Kim, W. H., Fan, S., Cai, H., Strom, S., Liu, Y., El-Assal, O., and Gao, B. (2002). Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes. Gastroenterology 122, 1020-1034. Radaeva, S., Sun, R., Pan, H. N., Hong, F., and Gao, B. (2004). Interleukin 22 (IL-22) Plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival for hepatocytes via STAT3 activation. Hepatology 39, 1332-1342. Sass, G., Shembade, N. D., and Tiegs, G. (2005). Tumour necrosis factor alpha (TNF)-TNF receptor 1-inducible cytoprotective proteins in the mouse liver: relevance of suppressors of cytokine signaling. Biochem J 385, 537-544. Sato, T., Saito, R., Jinushi, T., Tsuji, T., Matsuzaki, J., Koda, T., Nishimura, S., Takeshima, H., and Nishimura, T. (2004). IFN-gamma-induced SOCS-1 regulates STAT6-dependent eotaxin production triggered by IL-4 and TNF-alpha. Biochem Biophys Res Commun 314, 668-675. Scheller, J., Ohnesorge, N., and Rose-John, S. (2006). Interleukin-6 trans-signaling in chronic inflammation and cancer. Scand J Immunol 63, 321-329. Schumann, J., Wolf, D., Pahl, A., Brune, K., Papadopoulos, T., Rooijen, N., and Tiegs, G. (2000). Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol 157, 1671-1683. Steelman, L. S., Pohnert, S. C., Shelton, J. G., Franklin, R. A., Bertrand, F. E., and McCubrey, J. A. (2004). JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189-218. Suganuma, M., Okabe, S., and Kurusu, M. (2002). Discrete roles of cytokines, TNF-alpha, IL-1, IL-6 in tumour promotion and cell transformation. Int J Oncol 20, 131-136. Sun, R., Tian, Z., Kulkarni, S., and Gao, B. (2004). IL-6 prevents T cell-mediated hepatitis via inhibition of NKT cells in CD4+ T cell-and STAT3-dependent manners. J Immunol 172, 5648-5655. Taga, T and Kishimoto, T. (1992). Role of a two-chain IL-6 receptor system in immune and hematopoietic cell regulation. Crit Rev Immunol 11, 265-280. Taga, T and Kishimoto, T. (1997). gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15, 797-819. Tagawa, Y., Sekikawa, K., and Iwakura, Y. (1997). Suppression of concanavalin A-induced hepatitis in IFN-gamma (-/-) mice, but not in TNF-alpha (-/-) mice: role for IFN-gamma in activating apoptosis of hepatocytes. J Immunol 159, 1418-1428. Takeda, K., Hayakawa, Y., Van Kaer, L., Matsuda, H., Yagita, H., and Okumura, K. (2000). Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci U S A 97, 5498-5503. Takeda, K., Clausen, B. E., Kaisho, T., Tsujimura, T., Terada, N., Forster, I., and Akira, S. (1999). Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39-49. Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T., and Akira, S. (1998). Stat3 Activation Is Responsible for IL-6-Dependent T Cell Proliferation Through Preventing Apoptosis: Generation and Characterization of T Cell-Specific Stat3-Deficient Mice. J Immunol 161, 4652-4660. Takeda, K., Noguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T., and Akira, S. (1997). Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. PNAS 94, 3801-3804. Taub, R. (2004). Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5, 836-47. Tiegs, G., Hentschel, J., and Wedel, A. (1992). A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90, 196-203. Turkson, J., Ryan, D., Kim, J. S., Zhang, Y., Chen, Z., Haura, E., Laudano, A., Sebti, S., Hamilton, A. D., and Jove, R. (2001). Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276, 45443-45455. Westerman, K. A. and Leboulch, P. (1996). Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci U S A 93, 8971-8976. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33647 | - |
| dc.description.abstract | 利用Con A注射在小鼠引發嚴重肝臟病變是研究人類肝炎的一個很好的動物模式。雖然這一個動物模式已經被沿用了數十年,其反應機制仍然不清楚。為了要研究在Con A所引起肝炎反應中STAT3在肝細胞內的角色,我們用只剔除肝臟細胞STAT3基因(STAT3KO)的老鼠來作為動物模式的研究材料。在我們實驗室之前的研究中發現,STAT3KO老鼠在注射Con A之後,血清中的AST/ALT數值以及肝臟受損程度和肝臟中caspase-3的活性都比正常的老鼠低。在用致死劑量的Con A 注射小鼠時,STAT3KO老鼠則有比較高的存活率。利用體外毒殺試驗 (in vitro killing),我們進一步確認STAT3在肝臟細胞中的角色,STAT3KO或正常的肝細胞在體外(in vitro)和被Con A 活化過的肝臟內的白血球(IHL)共同培養時,我們發現缺少STAT3的肝細胞比較能抵抗來自正常或STAT3KO肝臟內白血球的毒殺。這些結果皆指出STAT3在Con A 引發的老鼠肝炎的動物模式中扮演促進發炎的角色。
接著我們進一步研究 STAT3KO老鼠抑制Con A引發肝炎的機制。首先,在活體(in vivo)及活體外(in vitro)的實驗中,我們都在STAT3KO老鼠的肝和肝細胞中觀察到比較低的兩種p85α的同種型(isoform) - p55α及p50α的表現。這兩種蛋白質已知會抑制PI3K的活性,並導致較低的細胞存活率。的確,在注射Con A之後,STAT3KO老鼠具有比較高的Akt活性。這些結果顯示STAT3KO老鼠比較不易從p85α轉換成p55α及p50α可能是造成其抑制Con A引發肝炎的原因之一。 為了探討STAT3KO老鼠在Con A 模式中有較低的肝炎反應,是否是因為STAT3KO肝細胞對細胞激素引起的細胞死亡有不同的反應,我們肝細胞 (primary hepatocyte) 在體外以TNF-α/IL-6 刺激,發現誘發細胞死亡的程度在缺少STAT3的肝細胞中較低而且 IL-6造成增強TNF-α引起細胞死亡的機制在缺少STAT3的肝細胞中也是受到抑制。 最後,在利用細胞激素刺激前後,STAT3KO肝細胞比起正常的肝細胞,有較低的SOCS3和較強的SOCS1表現,暗示著在STAT3KO肝細胞中不同的SOCS的表現量可能會影響細胞激素訊息傳遞的路徑進而抑制Con A引發的肝炎反應。 綜合以上發現,這些結果顯示在Con A 引發的老鼠肝炎動物模式中STAT3可能透過促進PI3 kinase 中p85α轉換成p55α及p50α及透過IL-6-STAT3的訊號傳遞增強TNF-α引起的細胞死亡或是經由不同的SOCS產生量來改變細胞激素的訊息傳導這些機制,因而扮演了正向調控的角色。 | zh_TW |
| dc.description.abstract | Concanavalin A (Con A)-induced hepatitis is considered as a model for human fulminant hepatitis. Although this model has been established for decades, the underlying mechanisms are still not fully understood. In order to clarify the role of STAT3 in liver during Con A-induced hepatitis, liver-specific STAT3 conditional knockout mice were used. In our previous studies, reduced serum ALT/AST levels, liver injury and apoptosis were observed in STAT3KO mice after Con A treatment. Higher survival rate was also shown in STAT3KO mice after challenging mice with high-dose Con A. Moreover, STAT3KO hepatocytes were more resistant to in vitro killing of Con A-activated IHLs. These data suggested that STAT3 had a pro-apoptotic role in hepatocytes in Con A-induced hepatitis.
The mechanisms of resistance of STAT3KO mice to Con A-induced hepatitis were further investigated. First of all, lower expressions of p55α and p50α, two isoforms of p85α regulatory subunits, were observed in liver and primary hepatocytes of STAT3KO mice both in in vivo and in vitro experiments. Secondly, enhanced Akt activity was observed in STAT3KO mice after administration of Con A. These results suggested that the reduced conversion of PI3 kinase regulatory subunits from p85α to p55α and p50α might contribute to the reduced hepatitis in STAT3KO mice. To investigate if the differential response to cytokine-induced apoptosis also resulted in the resistance of STAT3KO mice in Con A-induced hepatitis, primary hepatocytes were stimulated with TNF-α/IL-6 in vitro. Decreased TNF-α-induced apoptosis was found in STAT3KO hepatocytes and the IL-6-mediated enhancement of TNF-α-induced apoptosis in hepatocytes was not blocked in the absence of STAT3. Finally, impaired SOCS3 and enhanced SOCS1 expression were detected in STAT3KO heaptocytes before and after stimulation, implying the differential SOCS production might affect cytokine signaling pathways and contributed to reduced Con A-induced hepatitis in STAT3KO mice. Taken together, these results suggested that STAT3 is a positive regulator for Con A-induced hepatitis probably by affecting the conversion of p85α to p55α and p50α of PI3 kinase, regulating the response through IL-6-STAT3 signaling to enhance TNF-α-induced apoptosis or altering cytokine responses via atypical SOCS production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:44:09Z (GMT). No. of bitstreams: 1 ntu-95-R93449011-1.pdf: 634339 bytes, checksum: aacfd5cb02f281d61b2b9ca6ad5c54bd (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Chapter I Introduction………………………………………………………… 1
Part 1 Background……………………………………………………………… 1 1.1T cell-mediated hepatitis induced by concanavalin A……………………… 1 1.2JAK-STATs signaling pathway………………………………………………1 1.3Physiological function of STAT3…………………………………………… 2 1.4IL-6 signaling pathway……………………………………………………… 3 1.5The interplay STAT1 and STAT3 and Con A-induced hepatitis……………… 4 1.6 Phosphatidylinositol 3-kinase (PI 3-kinase) and cell survival…………………6 Part 2 Rationale and objectives…………………………………………………7 Chapter II Materials and Methods……………………………………………… 8 2.1 mice………………………………………………………………………… 8 2.2 Preparation of mouse tail DNA and genotyping………………………………8 2.3 Induction of mouse hepatitis………………………………………………… 9 2.4 Quantitative real-time PCR (RT-QPCR)………………………………………9 2.5 Western blotting analysis…………………………………………………… 10 2.6 Isolation of mouse intrahepatic leukocytes (IHL)……………………………10 2.7 Flow cytometry analysis……………………………………………………11 2.8 Isolation of splenocytes……………………………………………………11 2.9 Hepatocyte preparation……………………………………………………11 2.10 In vitro killing assay………………………………………………………12 2.11 Caspase-3 activity assay………………………………………………12 2.12 Determination of cytokine-induced apoptotic hepatocytes……………13 Chapter III Results………………………………………………………… 14 3.1 STAT3KO mice are more resistant to Con A-induced hepatitis than WT mice...14 3.2 Reduction of lethality in STAT3KO mice after Con A administration…………14 3.3 Reduced p55α and p50α expression in the liver of STAT3KO mice after Con A treatment…………………………………………………………15 3.4 Enhanced pAkt and Mcl-1 expression in the liver of STAT3KO mice after Con A treatment…………………………………………………………16 3.5 Comparable percentage of different intrahepatic leukocytes (IHLs) in WT and STAT3KO mice after Con A treatment………………………………17 3.6 STAT3KO hepatocytes were more resistant to killing of activated IHL in vitro.17 3.7 STAT3KO hepatocytes were more resistant to in vitro killing of Con A-activated IHL…………………………………………………………………18 3.8 Reduction of TNF-α-mediated apoptosis in primary hepatocytes of STAT3KO mice by IL-6………………………………………………………19 3.9 Isoforms of p85α, a PI3 kinase subunit, were reduced in the primary hepatocytes of STAT3KO mice before and after TNF-α/IL-6 treatment………………20 3.10 Induction of SOCS3 is impaired but SOC1 is prolonged in the hepatocyte of STAT3KO hepatocytes in response to TNF-α plus actinomycin D treatment…21 Chapter IV Discussion……………………………………………………………23 4.1 The pro-apoptotic role of STAT3 for hepatocytes in Con A-induced hepatitis………………………………………………………………23 4.2 Differential PI3 kinase conversion of WT and STAT3KO mice under in vivo and in vitro stimulation………………………………………………………26 4.3 The reduction of hepatitis in STAT3KO mice after administration of Con A was due to the absence of STAT3 but not infiltrating intrahepatic leukocytes (IHLs)…27 4.4 Differential SOCS1 expression of WT and STAT3KO mice under in vivo and in vitro stimulation…………………………………………………………………28 Reference………………………………………………………………………30 Figures…………………………………………………………………………41 List of Figures Figure 1: Reduction of lethality in STAT3KO mice after Con A administration……………42 Figure 2: mRNA of p50α but not p85α or p55α was decreased in the liver of STAT3KO mice after Con A treatment…………………………………43 Figure 3: Enhanced and prolonged activation of Akt and increased expression of Mcl-1 in the liver of STAT3KO mice after Con A treatment…………………44 Figure 4: Comparable percentage of intrahepatic leukocytes (IHLs) in WT and STAT3KO mice after Con A treatment………………………………… 45 Figure 5: STAT3KO hepatocytes were more resistant to the killing of Con A-activated IHL……………………………………………………………46 Figure 6: STAT3KO hepatocytes were more resistant to killing of Con A-activated IHL from WT or STAT3KO mice……………………………………47 Figure 7: Enhancement of TNF-α-mediated apoptosis in primary hepatocytes of WT mice by IL-6…………………………………………………………48 Figure 8: Dose-dependent enhancement of TNF-α-mediated apoptosis of primary hepatocytes by IL-6 was blocked in the absence of STAT3………………………49 Figure 9: Expression of p85α, p50α and p55α was reduced in the primary hepatocytes of STAT3KO mice than that in WT mice before and after treatments……………………51 Figure 10: Expression of SOCS1, but not SOCS3, was enhanced in STAT3KO hepatocytes……………………………………………………………52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝炎 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | Con A | en |
| dc.subject | STAT3 | en |
| dc.subject | hepatitis | en |
| dc.title | STAT3在Con A 引起肝炎反應中促進肝細胞進行細胞凋亡的角色研究 | zh_TW |
| dc.title | The pro-apoptotic role of STAT3 in hepatocytes during Con A-induced hepatitis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃麗華,王萬波 | |
| dc.subject.keyword | 肝炎,細胞凋亡, | zh_TW |
| dc.subject.keyword | Con A,hepatitis,STAT3, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 619.47 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
