Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃耀輝
dc.contributor.authorYeh-Hsin Chenen
dc.contributor.author陳業欣zh_TW
dc.date.accessioned2021-06-13T04:51:07Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citation參考文獻
Ahmad S, Kitchin KT, Cullen WR. Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin. Toxicol Lett 2002;133:47– 57.
Toxicological profile for arsenic, ASTDR. Atlanta: Agency for Toxic Substances and Disease Registry, 2000; 468p.
Brouwer OF, Onkenhout W, Edelbroek PM, de Kom JFM, de Wolff FA, Peters ACB. Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clin Neurol Neurosurg 1992;94:307–310.
Buchet JP, Lauwerys R. Role of thiols in the in-vitro methylation of inorganic arsenic by rat liver cytosol. Biochem Pharmacol 1988;37:3149–3153.
Chatterjee A. Determination of total cationic and total anionic arsenic species in oyster tissue using microwave-assisted extraction followed by HPLC–ICP-MS. Talanta 2000;51(2):303-314.
Chiou HY, Hsueh YM, Hsieh LL, HsuLI, HsuYH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC, Chu TH, Chuan CW, Yang MH, Chen CJ. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res 1997;386:197-207.
Chung JS, Kalman DA, Moore LE, Kosnett MJ, Arroyo AP, Beeris M, Mazumder DN, Hernandez AL, Smith AH. Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ Health Perspect 2002;110(7):729-33.
Concha G, Vogler G, Nermell B, Vahter M. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ Health Perspect 1998;106(6):355-359.
Crecelius EA. Changes in the chemical speciation of arsenic following ingestion by man. Environ Health Perspect 1977;19:147–50.
Cullen WR, McBride BC, Manji H, Pickett AW, Reglinski J. The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 1989;3:71–78.
Drobna Z, Waters SB, Walton FS, LeCluyse EL, Thomas DJ, Styblo M. Interindividual variation in the metabolism of arsenic in cultured primary human hepatocytes. Toxicol Appl Pharmacol 2004;201(2):166-77.
Edmonds JS, Francesconi KA, Cannon JR, Raston CL, Skelton BW, White AH. Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus George. Tetrahedron Letters 1977; 18:1543-1546.
Edmonds JS, Francesconi KA. Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and NMR spectra. Journal of the Chemical Society.1983; 2375-2382.
Edmonds JS, Francesconi KA. Transformations of arsenic in the marine environment. 1987; 43(5):553-557.
Edmonds JS, Francesconi KA. Organoarsenic compounds in the marine environment. In: Craig PJ, editor. Organometallic Compounds in the Environment, 2nd ed. John Wiley & Sons, West Sussex, 2003;195-220.
Francesconi KA, Tanggaard R, McKenzie CJ, Goessler W. Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 2002;48(1):92-101.
Gregus Z, Nemeti B. Purine nucleoside phosphorylase as a cytosolic arsenate reductase. Toxicol Sci 2002;70(1):13-9.
Heinrich-Ramm R, Mindt-Prüfert S, Szadkowski D. Arsenic species excretion after controlled seafood consumption. J Chromatogr 2002;778:263-273.
Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002;133:1-16.
Kohlmeyer U, Kuballa J, Jantzen E. Simultaneous separation of 17 inorganic and organic arsenic compounds in marine biota by means of high-performance liquid chromatography/inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 2002;16:965-974.
Kurttio P, Komulainen H, Hakala E, Kahelin H, Pekkanen J. Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch Environ Contam Toxicol 1998;34:297-305.
Le XC, Cullen WR, Reimer KJ. Human urinary arsenic excretion after one-time ingestion of seaweed, crab and shrimp. Clin Chem 1994;40(4):617-624.
Le XC, Ma M. Speciation of arsenic compounds by using ion-pair chromatography with atomic spectrometry and mass spectrometry detection. J Chromatogr A 1997;764:55-64.
Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem 2002;277(13):10795–10803.
Lintschinger J, Schramel P, Hatalak-Rauscher A, Wendler I, Michake B. A new method for the analysis of arsenic species in urine by using HPLC-ICP-MS. Fresenius J Anal Chem 1998;362(2):313-318.
Lucas F. Acute and chronic toxicity assessment of MSMA and DSMA. Book of Posters. Third International Conference on Arsenic Exposure and Health Effects. San Diego, 1998.
Ma MS, Le XC. Effect of arsenosugars ingestion on urinary arsenic speciation. Clin Chem 1998;44(3):539-550.
Marafante E, Vahter M, Dencker L. Metabolism of arsenocholine in mice, rats and rabbits. Sci Total Environ 1984;34:223-240.
Marafante E, Vahter M, Envall J. The role of the methylation in the detoxication of arsenate in the rabbit. Chem Biol Interact 1985;56:225–238
Marafante E, Vahter M, Norin H, Envall J, Sandstrom M, Christakopoulos A, Ryhage R. Biotransformation of dimethylarsinic acid in mouse, hamster and man. J Appl Toxicol 1987;7:111–117.
Marnell LL, Garcia-Vargas GG, Chowdhury UK, Zakharyan RA, Walsh B, Avram MD, Kopplin MJ, Cebrian ME, Silbergeld EK, Aposhian HV. Polymorphisms in the human monomethylarsonic acid (MMAV) reductase/hGSTO1 gene and changes in urinary arsenic profiles.
Chem Res Toxicol 2003;16(12):1507-13.
Mass MJ, Tennant A, Roop BC, Cullen WR, Styblo M, Thomas DJ, Kligerman AD. Methylated trivalent arsenic species may be the proximate or ultimate genotoxic forms of arsenic. Chem Res Toxicol 2001;14:355-361.
McSheehy S, Szpunar J, Morabito R, Quevauviller P. The speciation of arsenic in biological tissues and the certification of reference materials for quality control. Trends Anal Chem 2003;22(4):191-209.
Meza MM, Yu L, Rodriguez YY, Guild M, Thompson D, Gandolfi AJ, Klimecki WT. Developmentally restricted genetic determinants of human arsenic metabolism: association between urinary methylated arsenic and CYT19 polymorphisms in children. Environ Health Perspect 2005;113(6):775-81.
Milstein LS, Essader A, Pellizzari ED, Fernando RA, Raymer JH, Levine KE, Akinbo O. Development and application of a robust speciation method for determination of six arsenic compounds present in human urine. Environ Health Perspect 2003;111(3):293-296.
Moore MM, Brock KH, Doerr CL. Genotoxicity of arsenic and its methylated metabolites. In: Chapell WR, Abernathy CO, Cotern CR eds. Arsenic Exposure and Health, Science and Tecnology Letters, Northwood, UK, 1994;191-198.
Moore MM, Harrington-Brock K, Doerr CL. Relative genotoxic potency of arsenic and its methylated metabolites. Mutat Res 1997;386:279–290.
Nemeti B, Gregus Z. Reduction of arsenate to arsenite in hepatic cytosol. Toxicol Sci 2002;70(1):4-12.
Nesnow S, Roop BC, Lambert G, Kadiiska M, Mason RP, Cullen WR, Mass MJ. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chem Res Toxicol 2002;15:1627-1634.
Norin H, Christakoporlos A. Evidence for the presence of arsenobetaine and another organoarsenical in shrimps. Chemosphere 1982; 11(3):287-298.
Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharamacol 2000;163:203-207.
Petrick JS, Jagadish B, Mash EA, Aposhian HV. Monomethylarsonous Acid (MMAIII) and Arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 2001;14:651-656.
Radabaugh TR, Sampayo-Reyes A, Zakharyan RA, Aposhian HV. Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems. Chem Res Toxicol 2002;15(5):692–698.
Ritchie AW, Edmonds JS, Goessler W, Jenkins RO. An origin for arsenobetaine involving bacterial formation of an arsenic–carbon bond. FEMS Microbiol Lett 2004;235(1):95-99.
Sakurai T. Biological effects of organic arsenic compounds in seafood. Appl Organometal Chem 2002;16:401-405.
Shiomi K. Arsenic in marine organisms: Chemical forms and toxicological aspects, Ch. 12. Nriagu JO ed. Arsenic in the environment. Part II: Human Health and Ecosystem Effects. New York: John Wiley & Sons, Inc.1994;26-27.
Styblo M, Del Razo LM, Vega L, Germolee DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 2000;74:289-299.
Tseng WP. Effects and dose-response relationships of skin cancer and Blackfoot disease with arsenic. Environ Health Perspect 1977;19:109-119.
Vahter M, Marafante E. Reduction and binding of arsenate in marmoset monkeys. Arch Toxicol 1985;57:119–124.
Vahter M, Concha G, Nermell B, Nilsson R; Dulout F, Natarajan AT. A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol 1995;293(4):455-62.
Vahter M. Methylation of inorganic arsenic in different mammalian species and population groups. Sci Prog 1999;82:69–88.
Vahter M. Variation in human metabolism of arsenic. In: Abernathy, C.O., Calderon RL, Chappell WR eds. Arsenic Exposure and Health Effects. Chapman and Hall, New York. 1999.
Vahter M. Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett 2000;112-113:209-217.
Vélez D, Montoro R. Arsenic speciation in manufactured seafood products. J Food Prot 1998;61 (9):1240-1245.
Vélez D.,Ybanez N, Montoro R. Monomethylarsonic and Dimethylarsinic acid contents in seafood products. J Agric Food Chem 1996;44:859-864.
Yamanaka K, Hayashi H, Tachikawa M, Kato K, Hasegawa A, Oku N, Okada S. Metabolic methylation is a possible genotoxicityenhancingprocess of inorganic arsenics. Mutat Res 1997;394:95-101.
Yu L, Kalla K, Guthrie E, Vidrine A, Klimecki WT. Genetic variation in genes associated with arsenic metabolism: glutathione S-transferase omega 1-1 and purine nucleoside phosphorylase polymorphisms in European and indigenous Americans. Environ Health Perspect 2003;111(11):1421-7.
Zakharyan RA, Sampayo-Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV. Human monomethylarsonic acid (MMAV) reductase is a member of the glutathione- S-transferase superfamily. Chem Res Toxicol 2001;14:1051–1057.
姚琬琳:人體進食海產類食物後尿液中砷代謝物種分析。國立台灣大學職業醫學與工業衛生研究所碩士論文 2002。
陳由瑄:食用牡蠣後尿中代謝物分布之變異性。國立台灣大學職業醫學與工業衛生研究所碩士論文 2003。
許家晴:攝食含有機砷食物後尿中砷物種分布之情形。國立台灣大學職業醫學與工業衛生研究所碩士論文 2004。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33623-
dc.description.abstract摘要
一般人暴露到砷的主要途徑為食物與飲用水。一般而言,無機砷的毒性較有機砷的毒性大;目前無機砷的代謝作用方面也有較多且完整的研究。有關人體對有機砷的代謝機制方面的研究並不多,其詳細的代謝機轉仍不清楚。然而,無機砷和有機砷的代謝作用在個體間確實有變異性的存在;影響這些變異性的因子包括年齡、性別、種族、砷物種的形式、環境因子和基因多形性等。本研究的目的主要是探討人體在食用牡蠣後,PNP, CYT19和GSTO1基因多形性對人體代謝有機砷的速率所可能產生的影響,以及和尿液中砷代謝物質濃度的變化情形之間的相關性。
本研究的51位受試者,分別來自過去進行的三個飲食控制實驗。受試者在這為期七天的飲食控制實驗中,除了第四天進食所提供的海產類食物之外,其餘時間皆限制其攝食任何水生類動植物及其相關製品。同時收集受試者連續七天早晨的第一泡尿液,分析尿中As5+、As3+、DMA、MMA濃度。進一步收集受試者的血液樣本,針對PNP, CYT19和GST1基因,進行單核甘酸多形性(Single nucleotide polymorphisms, SNPs)分析。
結果顯示,DMA是尿液中最主要的砷代謝物種,其平均濃度在食用牡蠣後的第一天顯著地上升到最高值(31.1±15.2μg/L),之後則逐漸下降。As3+濃度的變化也有類似的情形發生。依據尿中DMA濃度在食用牡蠣後的第一天、第二天或第三天達到最高值,將受試者的代謝速率分成快、中、慢三組,各組分別有28人、19人及4人。由此可知,不同個體之間對有機砷的代謝速率有所差異。
本研究發現,DMA代謝速率最快的受試者,其平均年齡(28.3±1.0歲)顯著大於DMA代謝速率最慢的受試者(25.7±1.6歲)。另外,CYT19基因
intron6上點位發生的SNP (G > C)突變和DMA代謝速率之間,有顯著的相關(p=0.027);經校正其他可能的干擾因子,包括性別、年齡、BMI、和單位體重食用牡蠣量之後,相較於基因型為一般型的受試者而言,在此點位上發生SNP的受試者,其DMA的代謝速率顯著較快(OR=0.26, 95% C.I=0.07-0.93)。進一步,利用線性回歸分析分別去探討受試者年齡和此點位的SNP和食用牡蠣後尿液中DMA增加的濃度以及DMA累積增加濃度之間的相關性。結果顯示,當受試者的年齡越大時,DMA累積增加濃度顯著地減少(β=-3.97)。CYT19基因多形性方面,有此SNP組別的受試者,其尿液中DMA增加濃度和累積增加濃度皆增加(β=4.68, β=1.67),但沒有達到統計上的顯著水準。
由上述結果,推測年齡和CYT19基因intron6上點位的SNP (G > C)都可能是影響受試者在食用牡蠣後,其DMA代謝速率快慢的重要因素之ㄧ。也因為DMA代謝速率在個體上的差異性,進而造成不同個體之間對砷代謝作用有變異性存在。
zh_TW
dc.description.abstractAbstract
Food and drinking water are the major exposure routes of arsenic among the general population. In general, it was believed that the toxicity of inorganic arsenic was greater than organic arsenic. Up to now, inorganic arsenic is more thoroughly studied than organic arsenic. Consequently, the metabolism of organic arsenic has not been closely unveilded yet. However, there are considerable variations in the metabolism of inorganic and organic arsenic among individuals. Factors which have been shown to influence the methylation of arsenic include age, gender, ethnics, form of arsenic administered, environmental factors and genetic polymorphism, etc. The goal of the present study is to explore the effects of genetic polymorphisms of the human PNP, CYT19 and GSTO1 on the variation of arsenic metabolic rate among individuals, and the correlation between genetic polymorphism and the variation of urinary arsenic metabolites after oyster ingestion.
Fifty one study subjects were recruited from the past three dietary control studies. During the one-week dietary control study, the study subjects ate the same food stuffs containing no seafood in all meals to exclude the unexpected seafood uptake, except for the ingestion of designated amount of oyster on the fourth day. First morning-voided urine samples of the study subjects were collected for 7 consecutive days and analyzed by HPLC-HG-AAS and HPLC-ICP-MS for urinary arsenic species, i.e. As3+, As5+, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Then the blood samples of study subjects were collected for analyzing the genetic polymorphisms of the human PNP, CYT19 and GSTO1.
In general, DMA was the major urine metabolite, and its concentration reached the highest level on the first day after oyster ingestion and gradually decreased latter. The daily fluctuation of As3+ was similar to that of DMA. The DMA metabolic rate was categorized into three levels, i.e. fast (n=28), medium (n=19) and slow (n=4) groups, respectively, according to the day on which the urinary DMA concentrations reached the highest levels among these days after oyster ingestion. Based on this, it was concluded that there was difference in the metabolic rate of organic arsenic among study subjects.
The mean age of the fast metabolic group, 28.3±1.0 years, was significantly greater than that of the slow metabolic group, 25.7±1.6 years. SNP (G > C) in intron6 of CYT19 gene was positively associated with DMA metabolic rate (p=0.027) as compared to wild-type gene. The relationships of age and SNP (G > C) in intron6 of CYT19 with either maximum or cumulative DMA increased concentration were explored by multiple linear regression. Data showed that the older the subjects are, the less the cumulative DMA increased concentration are (β=-3.97). In addition, the maximum and the cumulative DMA increased concentrations of study subjects who had SNP (G > C) in intron6 of CYT19 gene were higher than subjects whose genes were wild-type (β=4.68, β=1.67, respectively,) although both of them were not significant statistically.
According to the above, age and SNP (G > C) in intron6 of CYT19 were the factors that had influence on the variation of DMA metabolic rate and then caused the difference in urinary DMA metabolite among study subjects.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:51:07Z (GMT). No. of bitstreams: 1
ntu-95-R93841004-1.pdf: 529726 bytes, checksum: 701086cab0b9f5a41a7fd53a42a8e54b (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
摘要 2
Abstract 4
目錄 7
第一章 前言 9
1.1 研究背景 9
1.2 研究目的 10
第二章 文獻探討 11
2.1 砷在環境中分佈的情形 11
2.1.1 自然界的來源 11
2.1.2 人為的來源 11
2.2 砷在生物體中分佈的情形 11
2.2.1 無機砷的代謝作用 13
2.2.2 有機砷的代謝作用 14
2.3 砷對人體的影響 15
2.3.1 砷的毒性 15
2.3.2 砷對人體的健康效應 17
2.4 砷代謝作用的變異性 17
2.5 砷代謝作用中的基因多形性 19
2.5.1 Purine nucleoside phosphorylase (PNP) 20
2.5.2 Arsenic(III) methyltransferase (CYT19) 21
2.5.3 Glutathione-S-transferase omega1 (GSTO1) 22
第三章 材料與方法 24
3.1研究對象 24
3.2研究設計 24
3.3樣本的收集和分析 24
3.3.1尿液中砷物種的分析 24
3.3.2 PNP, CYT19和GSTO1 基因SNPs的分析 25
3.4統計分析 28
第四章 結果 30
4.1 受試者的基本資料 30
4.2 牡蠣中砷代謝物種分佈的情形 30
4.3 尿中砷代謝物種分佈的情形 31
4.4 以DMA代謝速率分組比較各相關因子之間的差異 32
4.5 受試者PNP, CYT19和GSTO1基因多形性分布的情形 34
4.6 PNP, CYT19和GSTO1基因多形性和食用牡蠣後尿中砷物種代謝速 率之間的相關性 35
4.7 年齡、CYT19基因intron6上點位的SNP (G > C)突變和食用牡蠣後受試者尿液中代謝DMA濃度變化之間的相關性 37
第五章 討論 43
5.1 食用牡蠣後尿液中砷物種濃度變化情形的探討 43
5.2 食用牡蠣後受試者代謝砷物種速率差異的探討 45
5.3 PNP, CYT19和GSTO1基因多形性分布情形的探討 46
5.4 基因多形性和砷物種代謝速率之間相關性的探討 47
5.5 影響食用牡蠣後尿中DMA濃度分布變異性的因子之探討 47
5.6 研究限制 49
第六章 結論 51
參考文獻 52
dc.language.isozh-TW
dc.titlePNP、CYT19和GSTO1基因多形性對食用牡蠣後尿液中砷代謝物分布之變異性的影響zh_TW
dc.titleEffects of Genetic Polymorphisms of the Human PNP, CYT19 and GSTO1 on Individual Variation of Urinary Arsenic Metabolites after Oyster Ingestionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建仁,薛玉梅,蘇怡寧
dc.subject.keyword有機砷,基因多形性,年齡,DMA代謝速率,zh_TW
dc.subject.keywordorganic arsenic,genetic polymorphism,age,DMA metabolic rate,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
517.31 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved