Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33616
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorWei-Che Changen
dc.contributor.author張維哲zh_TW
dc.date.accessioned2021-06-13T04:50:41Z-
dc.date.available2011-07-18
dc.date.copyright2006-07-18
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citation[參考文獻
[1] J. L. Baird, British Patent 285, 739, 1927.
[2] C. W. Hansell, U.S. Patent, 1,751,584, 1930.
[3] H. Lamm, Z. Instrumentenk. 50, 579, 1930.
[4] A. C. S. van Heel, Nature 173, 39, 1954.
[5] B. I. Hireschowitz, L. E. Curtiss, C. W. Peters, and H. M. Pollard,
Gastro-enterology 35, 50, 1958.
[6] N. S. Kapany, Fiber Optics: Principles and Applications, Academic
Press, San Diego, CA, 1967.
[7] F. P. Kapron, D. B. Keck, and R. D. Maurer, Appl. Phys. Lett. Vol. 17,
pp. 423, 1970.
[8] S. Shepard, “Optical Networking Crash Course,” McGraw-Hill, N.Y.,
pp.120, 2001.
[9] www.Lucent.com
[10] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O.
Carlson, “ Coherent light emission from GaAs junctions,” Phys.
Rev. Lett., Vol. 9, pp.366-368, 1962.
[11] M. I. Nathan, W.P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher,
“Stimulated emission of radiation from GaAs p-n juctions,” Appl.
Phys. Lett., Vol. 1, pp.62-64, 1962.
[12] T. M. Quist, R. H. Radiker, R. J. Keyes, W. E. Krag, B.Lax, A.L.
McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,”
Appl. Phys. Lett., Vol. 1, pp.91-92, 1962.
181
[13] N. Holonya, Jr. and S.F. Bevacqua, “Coherent (visible) light
emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., Vol. 1, pp.
82-83, 1962.
[14] Zh. I. Alferov and R. F. Kzarinov, Authors Certificate 288448
(U.S.S.R.) (as cited in Casey and Panish, Heterojunction lasers,
New York: Academic, 1978)
[15] Zh. I. Alferov, V. M. Andreev, D.Z. Garbuzov, Yu. V. Zhilyaev, E. P.
Morozov, E. L. Portnoi, amd V. G. Trofim, “Investigation of the
influence of the AlAs-GaAs heterostructure parameters on the laser
threshold current and the realization of continuous emission at
room temperature,” Fiz. Tekh. Poluprovodn, Vol .4, pp. 1826-1829,
1970.
[16] Govind P. Agrawal, Niloy K. Dutta, Semiconductor Lasers, Van
Nostrand Reinhold, N.Y.
[17] W. T. Tsang, “ Quantum confinement heterostructure semiconductor
lasers,” in Semiconductor and Semimetals, R. K. Willardson and A.
C. Beer. Eds., and R. Dingle, vol. Ed. New York: Academic, Vol. 24,
Ch.7, 1987.
[18] Johann Peter Reithmaier and Alfred Forchel, IEEE Circuits
&Devices Magazine Semiconductor Quantum Dots, Nov. 2003.
[19] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S.
Kop’ev, and V. M. Ustinov, “InGaAs–GaAs Quantum-Dot Lasers”,
IEEE J. Quantum Electron., Selected Topics, Vol. 3, No. 2, pp.196,
April 1997.
[20] M. Asada, Y. Mayamoto, and Y. Suematsu, “Gain and the threshold
of three dimensional quantum-box lasers,” IEEE J. Quantum
182
Electron., Vol. 22, pp. 1915-1921, 1986.
[21] Y. Arakawa, and A. Yariv, “Quantum well lasers – gain, spectra,
dynamics,” IEEE J. Quantum Electron., Vol. 22, pp. 1887-1899,
1986.
[22] M. Sugawara, H. Ebe, N.Hatori, and M. Ishida, Y. Arakawa, T.
Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal
amplification and processing by quantum-dot semiconductor optical
amplifiers”, Physical Review B 69, 235332, 2004.
[23] Nikolai N. Ledentsov, M. Grundmann, F. Heinrichsdorff, Dieter
Bimberg, Member, IEEE, V. M. Ustinov, A. E. Zhukov, M. V.
Maximov, Zh. I. Alferov, and J. A. Lott, “Quantum-Dot
Heterostructure Lasers”, IEEE J. Quantum Electron., Selected
Topics, Vol. 6, No. 3, pp.439, May/June 2000.
[24] P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J.
Urayama, K. Kim, and T. B. Norris, ”In(Ga)As/GaAs self-organized
quantum dot lasers: DC and small-signal modulation properties”,
IEEE Transactions on Electron Devices, Vol. 46, Issue 5, pp
871-883, May 1999.
[25] “InP-Based Materials and Devices Physics and Technology,” Edited
by Osamu Wada and Hideki Hasegawa, New York, Wiley, 1999.
[26] Ching-Fuh Lin, Yi-Shin Su, Di-Ku Yu, and Chao-Hsin Wu,
“Improved temperature characteristics of laser diodes with
nonidentical multiple quantum wells due to temperature-induced
carrier redistribution,” Appl. Phys. Lett., Vol. 82, 2003.
[27] N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Daplus,
“Quantum-Well heterostructure laser,” IEEE J. Quantum Electron.,
183
QE16, pp. 170-186, 1980.
[28] W. T. Tsang,” A graded-index waveguide separate-confinement laser
with very low threshold and a narrow Gaussian beam,” Appl. Phys.
Let., Vol. 39, pp. 134-137, 1981.
[29] R. L. Williams, M. Dion, F. Chatenroud, and K. Dzurko, “Exreme
low threshold current strained InGaAs/AlGaAs lasers by molecular
beam epitaxy,” Appl. Phys. Lett., Vol. 58, pp. 1816-1818, 1991.
[30] P.K. Bhattacharya, “Properties of III-V Quantum Wells and
Superlattices,” IEEE, London, 1996.
[31] G. P. Agrawa, N. K. Dutta, “Semiconductor Lasers”, VNR, N.Y.,
1993.
[32] S. Shimada H. Lshio, “Optical Amplifiers and their Applications“,
Ch. 3, 1994.
[33] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in
future fibre system”, IEEE J. Lightwave Technol., LT-6, No.4 , pp.
531-544, 1988.
[34] N. A. Olsson, M. G. Oberg, L. D. Tzeng and T. Cella, “Ultra-low
reflectivity 1.5μm semiconductor lasers,” Electron. Lett., Vol. 24, pp.
569-570, 1988.
[35] A. T. Semenov, V. R. Shidlovski, and S. A. Safin, “Wide spectrum
single quantum well superluminescent diodes at 0.8μm with bent
optical waveguide,” Electron. Lett., Vol. 29, pp. 854-857, 1993.
[36] S. Kondo, H. Yasaka, Y. Noguchi, K. Magari, M. Sugo, and O.
Mikami,“Very Wide Spectrum Multiquantum Well Superluminescent
diode at 1.5μm,” Electron. Lett., Vol. 28, pp. 132-133, 1992.
[37] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S.
184
Kop’ev, and V. M. Ustinov, “InGaAs–GaAs Quantum-Dot Lasers”,
IEEE J. Quantum Electron., Selected Topics, Vol. 3, No. 2, pp.196,
April 1997.
[38] M. Sugawara, K. Mukai, Y. Nakata, K. Otsubo, and H. Ishilkawa,
“Performance and Physics of Quantum-Dot Lasers with Self-
Assembled Columnar-Shaped and 1.3-μm Emitting InGaAs
Quantum Dots”, Senior Member, IEEE Invited Paper, pp462, IEEE J.
Quantum Electron., Selected Topics, Vol. 6, No. 3, May 2000.
[39] A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy,
“Comparison of the carrier induced refractive index, gain, and
linewidth enhancement factor in quantum dot and quantum well
lasers”, Appl. Phys. Lett. Vol. 84, No. 7, pp. 1058, Feb. 2004.
[40] S. L. Chuang, “Physics of Optoelectronic Devices,” Ch. 2, John
Wiley& Sons, N.Y., 1995.
[41] L. Harris, A. D. Ashmore, D. J. Mowbray, and M. S. Skolnick,
“Gain characteristics of InAs/GaAs self-organized quantum-dot
lasers”, Appl. Phys. Lett., Vol. 75, No. 22, pp. 3512 , Nov. 1999.
[42] Andrea Fiore, ”Quantum Dot Lasers”, Ecole Polytechnique Federale
de Lausanne, 2001.
[43] 何頤, “量子點雷射二極體之特性與應用', master thesis in
National Taiwan University, 2006.
[44] T. Takeshita, M. Ikeda, “High relaxation oscillation frequency
operation of a QW-LD at the second quantized level,” IEEE J.
Quantum Electron, Vol. 30, No.1 ,pp. 19-23, Jan. 1994.
[45] C. Joergensen, S, L. Danielsen, K. E. Stubkjaer, M. Schililing, K.
Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, et al.,
185
IEEE J. Quantum Electron., Sel. Topics 3, 1168, 1997.
[46] M. Ikeda, Switching characteristics of laser diode switch, IEEE J.
Quantum Electron., QE-19, 2, 157-164, 1983.
[47] B. R. Wu, C. F. Lin, L. W. Laih, and T. T. Shih, “Extremely
broadband InGaAsP/ InP superluminescent diodes,” Electron. Lett.,
Vol. 36, No. 25, pp. 2093-2095, 2000.
[48] C. F. Lin, Y. S. Su, and B. R. Wu, “Extremely broadband tunable
semiconductor lasers for optical communication,” CLEO’01,
Technical Digest, Baltimore, MD, USA, pp 237-238, 2001.
[49] T. Ssitoh and M. Mukai, “1.5μm GaInAs traveling-wave
semiconductor laser amplifier,” IEEE J. Quantum Electron., QE-23,
no.6 1010-1020, 1987.
[50] R. Andrea, et al, “Gain dynamics in traveling-wave semiconductor
optical amplifiers,” IEEE J. Selected Topics in Quantum Electronics,
Vol. 7, No.2, pp. 293-299, 2001.
[51] K. Magari, T. Ito, H. Kamioka, Y. Tohmori, and Y. Suzuki, “Novel
gain measurement method without optical fiber alignment in a
semiconductor optical amplifier,” Conference Proceedings -
International Conference on Indium Phosphide and Related
Materials, pp 139-142, 2002.
[52] M. Kuznetsov, “Theory of wavelength tuning in two-segment
distributed feedback lasers,” IEEE J. Quantum Electron., col. QE-24,
pp.1837-1844, 1988.
[53] W. T. Tsang, in Semiconductors and Semimetals, Vol.22B, W. T.
Tsang, Ed., Academic Press, San Diego, CA, Ch. 4, 1985.
[54] T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai,
186
M.Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics
in quantum-dot optical amplifiers and its application to optical
communication devices,” IEEE J. Quantum Electron., Vol. 37, pp.
1059–1064, Aug. 2001.
[55] M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa,
“Quantum-dot semiconductor optical amplifiers for high bit-rate
signal processing over 40 Gbit/s,” Proc. Lasers and Electro-Optics,
2001.
[56] P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna,
and D. Zhu, “High-speed modulation and switching characteristics of
In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE J.
Select. Topics Quantum Electron, Vol. 6, pp. 426–438, May/June
2000.
[57] P. Bhattacharya, K. Kamath, J. Singh, D. Klotzkin, J. Phillips, H.
Jiang, N. Chevela, T. Norris, T. Sosnowski, J. Laskar, and M.
Ramanamurty, “In(Ga)As/GaAs self organized quantum dot laser:
DC and small signal modulation properties,” IEEE Trans. Electron.
Devices, Vol. 46, pp. 871, May 1999.
[58] O. Qasaimeh, “Optical gain and saturation characteristics of
quantum-dot semiconductor optical amplifiers” IEEE J. Quantum
Electronic, vol. 39, pp. 793-798, June 2003.
[59] M. Sugawara, “Self-Assembled InGaAs/GaAs Quantum Dots,”
Semiconductor and Semimetals., N.Y., Academic, vol.60, 1999.
[60] O. Qasaimeh ”Effect of Inhomogeneous Line Broadening on Gain
and Differential Gain of Quantum Dot Lasers”, IEEE Transactions on
Electron Devices, Vol. 50, No. 7, pp. 1575, July 2003.
187
[61] P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stink, B. Fuchs, K.
J. Malloy, and, L. F. Lester, “183 nm Tuning Range in a
Grating-Coupled External-Cavity Quantum Dot Laser”, IEEE 17th
International Semiconductor Laser Conference, pp. 137-138, 2000.
[62] T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai,
M.Sugawara, O. Wada, and H. Ishikawa, “Nonlinear gain dynamics
in quantum-dot optical amplifiers and its application to optical
communication devices,” IEEE J. Quantum Electron., Vol. 37, pp.
1059–1065, Aug. 2001.
[63] H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R.
Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth
of 1.3 mm InAs/InGaAs dots-in-a-well structure”, J. of Appl. Phys.,
Vol. 93, No. 5, pp. 2931, March 2003.
[64] J. He, B. Xu, Z. G. Wang, S. C. Qu, and F. Q. Liu, “1.3
photoluminescence from high density of self-assembled InAs quantum
dots”, Advanced Nanomaterials and Nanodevices, Xi’an, China,
pp.262, 10–14 June 2002.
[65] P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna,
and D. Zhu, ”High-Speed Modulation and Switching Characteristics
of In(Ga)As-Al(Ga)As Self-Organized Quantum-Dot Lasers”, IEEE J.
Quantum Electron., Select Topics, Vol. 6, No. 3, pp.426, May/June
2000.
[66] R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers,
“High Speed Quantum-Well Lasers and Carrier Transport Effects”,
IEEE J. Quantum Electron., Vol. 28, No. 10, pp.1990, Oct. 1992.
188
[67] 曾煒傑, “量子點雷射之增益和特徵溫度研究”, master thesis in
National Taiwan University, 2006.
[68] R. E. Glover and M. Tinkham, Phys. Rev., Vol. 104, pp. 844, 1956.
[69] D. M. Ginsberg and M. Tinkham, Phys. Rev., Vol. 118, pp. 990,
1960.
[70] P. L. Richards and M. Tinkham, Phys. Rev., Vol. 119, pp. 575, 1960.
[71] L. H. Palmer and M. Tinkham, Phys. Rev., Vol. 165, pp. 588, 1968.
[72] G. Mourou, C. V. Stancampiano, and D. Blumenthal, Appl. Phys.
Lett., Vol. 38, pp. 470, 1981.
[73] G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl.
Phys. Lett., Vol. 39, pp. 295, 1981.
[74] R. Heidemann, T. Pfeffer, and D. Jager, Electron Lett., Vol. 19, pp.
316, 1983.
[75] D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett., Vol.
45, pp. 284, 1984.
[82] N. M. Froberg, B. B. Hu, X. C. Zhang, and D. H. Auston, IEEE. J.
Quant. Elect., Vol. 28, pp. 2291, 1992.
[83] L. Xu, X. C. Zhang, D. H. Auston, Appl. Phys. Lett., Vol. 59, pp.
3357, 1991.
[84] D. Birkedal, O. Hansen, C. B. Børensen, K. Jarasiunas, S. D.
Brorson, and S. R. Keiding, Appl. Phys. Lett., Vol. 65, pp. 79, 1994.
[85] H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. Miller, A. M. Fox,
S. Schmitt-Rink, and K. Köhler, Phys. Rev. Lett., Vol. 68, pp. 2212,
1992.
[86] X. C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys.
189
Lett., Vol. 56, pp. 1011, 1990.
[87]N. Sarukura, H. Ohtake, Z. Liu, T. Itatani, T. Sugaya, T. Nakagawa,
and Y. Sugiyama, Japan J. Appl. Phys., Vol. 37, L125, 1998.
[88] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J.
Levi, Phys. Rev. Lett., Vol. 68, pp. 102, 1992.
[89] B. B. Hu et al., Phys. Rev. Lett., Vol. 67, pp. 2709, 1991.
[90] D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, J. Opt.
Soc. Am. B, Vol. 7, pp. 2007, 1990.
[91] B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, and S. L.
Chuang, IEEE J. Quantum Electron., Vol. 28, pp. 2302, 1992.
[92] X. C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auston, M. T. Schmidt, P.
Tham and E. S. Yang, Appl. Phys. Lett., Vol. 56, pp. 2228, 1990.
[93] X. C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M.
Weiner, Appl. Phys. Lett., Vol. 62, pp. 2003, 1993.
[94] W. J. Walecki, D. Some, V. G. Kozlov, and S. V. Nurmikko, Appl.
Phys. Lett., Vol. 63, pp. 1809, 1993.
[95] J. Feldmann et al., Phys. Rev. B46, pp. 7252, 1992.
[96] C. Waschke et al., Phys. Rev. Lett., Vol. 70, pp. 3319, 1993.
[97] M. C. Nuss, K. W. Goosen, P. M. Mankiewich, M. L. O'Malley, and
M. Bhushan, J. Appl. Phys., Vol. 70, pp. 2238, 1991.
[98] M. C. Nuss, P. M. Mankiewich, M. L. O'Malley, E. H. Westerwich,
and P. B. Littlewood, Phys. Rev. Lett., Vol. 66, pp. 3305, 1991.
[99] M. C. Nuss, K. W. Goosen, P. M. Mankiewich, M. L. O'Malley, Appl.
Phys. Lett., Vol. 58, pp. 2561, 1991.
[100] M. S. C. Luo, S. L. Chuang, P. C. M. Planken, I. Brener, H. G.
Roskos, and M. C. Nuss, IEEE. J. Quant. Elect., Vol. 6, pp. 1478
190
1994.
[101] H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M.
Fox, S. Schmitt-Rink, and K. Kohler, Phys. Rev. Lett., Vol. 68, pp.
2216, 1992.
[102]P. C. M. Planken, M. C. Nuss, I Brener, K.W. Goosen, M. S. C. Luo,
S. L. Chuang, and L. Pfeiffer, Phys. Rev. Lett., Vol. 69, pp. 3800,
1992.
[103] I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeiffer, D. E. Leaird,
and A. M. Weiner, Appl. Phys. Lett., Vol. 63, pp. 2213, 1993.
[104] P. C. M. Planken, I Brener, M. C. Nuss, M. S. C. Luo, S. L. Chuang,
Phys. Rev. B48, pp. 4903, 1993.
[105] M. S. C. Luo, S. L. Chuang, P. C. M. Planken, I Brener, M. C. Nuss,
Phys. Rev. B48, pp. 11043, 1993.
[106] RPG Radiometer-Physics, Bergerwiesenstr. 15, 53340 Meckenheim,
Germany.
[107] R. E. Miles, P. Harrison, and D. Lippens, “Terahertz Sources and
system,” NATO Science Series II, Vol. 27, Kluwer, Dordrecht, 2001.
[108] E. R. Brown et al., “Oscillations up to 712GHz in InAs/AlSb
Resonant Tunneling Diodes,” Appl. Phys. Lett., Vol. 58, pp.
2291-2293, 1991.
[109] K. A. Mclntosh et al., “Terahertz Photomixing with Diode Lasers in
Low-temperature-growth GaAs,” Appl. Phys. Lett., Vol. 67, pp.
3844-3846, 1995.
[110] S. Matsuura, M. Tani, and K. Sakai, “Generation of Coherence
Terahertz Radiation by Photomixing in Dipole Photoconductivity
Antennas,” Appl. Phys. Lett., Vol. 70, pp. 559-561, 1997.
191
[111] B. B. Hu, X. C. Zhang, and D. H. Auston, “Terahertz Radiation
Induced by Subband-gap Femtosecond Optical Excitation of GaAs,”
Phys. Rev. Lett., Vol. 67, pp. 2709-2711, 1991.
[112] R. Kersting, K. Unterrainer, G. Strasser, H. F. Kauffmann, and E.
Gornik, ”Few-cycle THz Emission From Cold Plasma Oscillations,”
Phys. Rev. Lett., Vol. 79, pp. 3038-3041, 1997.
[113] Y. P. Gousev et al., “Widely Tunable Continuous-wave THz Laser,”
Appl. Phys. Lett., Vol. 75, pp. 757-759, 1999.
[114] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A.L. Hinchinson, and A.
Y. Cho, “Quantum Cascade Laser,” Science, Vol. 264, pp. 553-556,
1994.
[115] M. Rochat, J. Faist, M. Beck, U. Oesterle, and M. Hegems,
“Far-infrared (λ=88μm) Electroluminescence in a Quantum Cascade
Structure,” Appl. Phys. Lett., Vol. 73, pp. 3724-3726, 1998.
[116] B. S. Williams, B. Xu, Q. Hu, M. R. Melloch, “Narrow-linewidth
Terahertz Intersubband Emission From Three-level Systems,” Appl.
Phys. Lett., Vol. 75, pp. 2927-2929, 1999.
[117] J. Ulrich, R. Zobl, W. Schrenk, and K. Unterrainer, “Terahertz
Quantum Cascade Structures: intra- versus inter-well transition,”
Appl. Phys. Lett., Vol. 76, pp. 1928-1930, 2000.
[118] M. Helm, P. England, E. Colas, F. De Rosa, and S. J.
Allen, ”Intersubband Emission From Semiconductor Superlattices
Excited by Sequential Resonant Tunneling,” Phys. Rev. Lett., Vol. 63,
pp. 74-77, 1989.
[119] R. Colombelli F. Capasso, C. Gmackl, A. L. Hutchinson, D. L.
Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho,
192
“Far-infrared Surface-plasma Quantum-cascade Lasers at 21.5μm
and 24μm wavelengths,” Appl. Phys. Lett., Vol. 78, pp. 2620-2622,
2001.
[120] M. Beck, D. Hofstetter, T. Allen, J. Faist, U. Oesterle, M. Ilegems,
E. Gini, and H. Melchior, “Continuous Wave Operation of a
Mid-infrared Semiconductor Laser at Room Temperature,” Science,
Vol. 78, pp. 396-398, 2001.
[121] L. Thylen, J. Lightwave Technol. 6, 847, 1988.
[122] Sumimoto Osaka Cement, CO. LTD. Optoelectronics Business
Division, July, 2003.
[123] K. Noguchi, H. Miyazawa, and O.Mitomi, “75-GHz broadband
Ti:LiNBO3 optical modulator with ridge waveguide.” Electron. Lett.
30, 949, 1994.
[124] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw,
P.F. Hallemeier, D. Maack, D. V. Attanasio, D, J. Fritz, G. J. McBrien,
and D. E. Bossi, “ A reiew of Lithium Niobte Modulator for
Fiber-Optic Commnications Systems,” IEEE J. Sel. Topics Quantum
Electron. 6, 69, 2000.
[125] M. M. Howerton, R. P. Moller, A.S. Greenblatt, and R. Krahenbuhl,
IEEE Photon. Technol. Lett. 12, 792, 2000.
[126] F. Heismann, S. K. Korotky, and J. J. Veselka, “ Lithium niobate
integrated optics: Selected contemporary devices and system
applications,” in Optical Fiber Telecommunications III B, I. P.
Kaminow and T. L. Koch, Eds. N.Y. : Academic, pp. 377-462, 1997.
[127] E. J. Murphy, “Photonic switching,” in Optical Fiber
Telecommunications III B, I. P. Kaminow and T. L. Koch, Eds. N.Y. :
193
Academic, pp. 463-501, 1997.
[128] E. J. Murphy, Ed., Integrated Optical Circuits and Componenets:
Design and Applications. N.Y. : Marcel Dekker, Aug. 1999.
[129] M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K.
Uomi, and A. Takai, IEEE J. Quantum Electron., Vol. 29, pp. 2088,
1993.
[130] Y. Kim, S.K. Kim, J. Lee, Y. Kim, J. Kang, W. Choi, and J. Jeong,
“Characteristics of 10-Gb/s electroabsorpyion modulator integrated
distributed feedback lasers for long-haul optical transmission
systems,” Opt. Fiber Technol., Vol. 7, No.2, pp. 84-100, 2001.
[131] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto
and Takeuchi, “Wide Bandwidth of over 50GHz Traveling-wave
Electroabsorption Modulator integrated DFB lasers,” Electron. Lett.
Vol. 37, pp. 299-300, 2001.
[132] C. F. Lin, Optical Components for Communications, Principles and
Applications, Kluwer Academic Publishers Optics, pp. 102, 2004.
[133] M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold
of three-dimensional quantum box lasers,” IEEE J. Quantum
Electron., QE-22, pp. 1915–1921, 1986.
[134] Y. Arakawa and A. Yariv, “Quantum well lasers – Gain, spectra,
dynamics,” IEEE J. Quantum Electron., QE-22, pp. 1887–1899,
1986.
[135] K. Vahala, “Quantum box fabrication tolerance and size limits in
semiconductors and their effects on optical gain,” IEEE J. Quantum
Electron., QE-24, pp. 523–530, 1988.
[136] Y. Arakawa and A. Yariv, ‘Theory of gain, modulation response and
194
spectral linewidth in AlGaAs lasers,” IEEE J. Quantum Electron.,
QE-21, no. 10, pp. 1666-1674, Oct. 1985.
[137] P. A. Morton, R. A. Logan, T. Tanbun-EK, P. F. Sciortino Jr., A. M.
Sergent, R. K. Montgomery and B. T. Lee, “25 GHz bandwidth 1.55
pm GaInAsP P-doped strained multiplequantum-well lasers,”
Electron. Lett., Vol. 28, pp. 2156, 1992.
[138] P. A. Morton, T. Tanbun-EK, P. F. Sciortino Jr., A. M. Sergent and
W. Wecht, “Superfast 1.55 DFB lasers,” Electron. Lett, Vol. 29, pp.
1429, 1993.
[139] X. Hung, A.J. Seeds, J.S. Roberts, A. Knight, “Two-section tunable
laser with uniform frequency modulation response using quantum
confined Stark effect,” ECOC, pp. 20-24 Sep. 1998.
[140] Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki,
“Enhanced modulation bandwidth for strain-compensated
InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron., Vol.
34, No. 10, Oct. 1998.
[141] H. Saito, K. Nishi, and S. Suguo, “Low chirp operation in 1.6 μm
quantum dot laser under 2.5 GHz direct modulation,” Electronics
Letters, Vol. 37, No. 21, Oct. 2001.
[142] P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J.
Urayama, K. Kim, and T. B. Norris, “Carrier Dynamics and
High-Speed Modulation Properties of Tunnel Injection
InGaAs–GaAs Quantum-Dot Lasers,” IEEE J. Quantum Electron.,
Vol. 39, No. 8, Aug. 2003.
[143] M. C. Tatham, I. F. Lealman, Colin P. Seltzer, L. D. Westbrook and
D. M. Cooper, “Resonance frequency, damping, and differential gain
195
in 1.5 mm multiple quantum-well lasers,” IEEE J. Quanhun Electron,
Vol. 28, pp. 408-414, Feb. 1992.
[144] K. Uomi, T. Tsuchiya, M. Aoki and N. Chinone, “Oscillation
wavelength and laser structure dependence of nonlinear damping
effect in semiconductor lasers,” Appl. Phys. Lett., Vol. 58, No. 7, pp.
675-677, Feb. 1991.
[145] T. Takeshita, M. Ikeda, “High relaxation oscillation frequency
operation of a QW-LD at the second quantized level,” IEEE J.
Quanhun Electron, Vol. 30, No.1 , pp. 19-23, Jan. 1994
[146] W. Rideout, W. F. Sharfin, E. S. Koteles, M. 0. Vassell and B.
Elman, “Well-bamier hole burning in quantum well lasers,” IEEE
Photon. Technol. Lett., Vol. 3, No. 9, pp. 784-786, Sept. 1991.
[147] J. Yao, P. Gallion, W. ElsLser and G. Debarge, “Nonlinear Gain and
Its Influence on the Laser Dynamics in Single Quantum Well Lasers
Operating at the First and Second Quantized States,” IEEE Photon.
Technol. Lett., Vol. 4, No. 11, pp. 1210-1212, Nov. 1992.
[148] J. Yao, P. Gallion, “Effects of Carrier Diffusion and Quantum
Capture on the Dynamics of Separated Confinement Single Quantum
Well Lasers Operating at the First and Second Quantized States,”
IEEE Photon. Technol. Lett., Vol. 6, No. 4, pp. 471-474, April 1994.
[149] J. Sacher, W. Elsasser, E. 0. Gobel, and H. Jung, “Tailoring of
quantum well laser emission wavelength by antirereflection facet
coating,” Electron. Lett., Vol. 27, pp. 1463, 1991.
[150] M. Mittelstein, Y. Arakawa, A. Larsson, and A. Yariv, “Second
quantized state lasing of a current pumped single quantum well
laser”, Appl. Phys. Lett., Vol. 49, pp. 1689-1691, 1986.
196
[151] K. Berthold, A. F. J. Levy, S. J. Pearton, R. J. Malik, W. Y. Jan, and
J. E. Cunninghum, “Bias-controlled intersubband wavelength
switching in a GaAs/AlGaAs quantum well laser,” Appl. Phys. Lett.,
Vol. 55, pp. 1382-1384, 1989.
[152] M. Mittelstein, Y. Arakawa, A. Larsson, and A. Yariv, “Second
quantized state lasing of a current pumped single quantum well
laser,” Appl. Phys. Lett.. Vol. 49, pp. 1689-1691, 1986.
[153] Y. Tokuda, N. Tsukada, K. Fujiwara, K. Hamanaka, and T.
Nakayama, “Widely separate wavelength switching of single
quantum well laser diode by injection-current control,” Appl. Phys.
Lett., Vol. 49, pp. 1629-1631, 1986.
[154] K. J. Beernink, J. J. Alwan, and J. J. Coleman, “Wavelength
switching in narrow oxide stripe InGaAs-GaAs-AIGaAs
strained-layer quantum well heterostmcture lasers,” Appl. Phys. Lett.,
Vol. 58, pp. 2076-2078, 1991.
[155] T. R. Chen, Y. Zhuang, X. J. Xu, B. Zhao, and A. Yariv, “Second
quantized state oscillation and wavelength switching in strained-layer
multiquantum-well lasers,” Appl. Phys. Lett., Vol. 60, pp. 2954-2956,
1992.
[156] T. Takeshita and M. Ikeda, “High relaxation oscillation frequency
operation of a QW-LD at the second quantized level,” IEEE J.
Quantum Electron., Vol. 30, pp. 19-23, 1994.
[157] R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency
response of 1.3 mm InGaAsP high speed semiconductor lasers,”
IEEE J . Quantum Electron., QE-23, pp. 1410-1418, Sept. 1987.
197
[158] T.A. DeTemple and C.M. Herzinger, IEEE J. Quantum Electron.,
Vol. 29, pp. 1246 ,1993.
[159] M.T. Furtado, Braz. J. Phys., Vol. 24, pp. 466, 1994.
[160] M.T. Furtado, W. Carvalho Jr., C.M.A. Coghi, E.J.T. Manganote
and A.C.G. Bordeaux- Rêgo, Rev. Fis. Apl. Instr., Vol. 11, 1996.
[161] S.Y. Hu, D.B. Young, A.C. Gossard and L.A. Coldren, IEEE J.
Quantum Electron., Vol. 30, pp. 2245, 1994.
[162] G.P. Agrawal and N.K. Dutta, in Semiconductor Lasers, 2nd
edition (Van Nostrand Reinhold, New York, 1993), chap.2.
[163] H. Hirayama, J. Yoshida, Y. Miyake and M. Asada, IEEE J.
Quantum Electron., Vol. 30, pp. 54, 1994.
[164] P.R. Claisse and G.W. Taylor, Electron. Lett., Vol. 28, pp. 1991,
1992.
[165] J. Jacquet, P. Brosson, A. Olivier, A. Perales, A. Bodere and D.
Leclerc, IEEE Photon. Technol. Lett., Vol. 2, pp. 620, 1990.
[166] N. Nuntawong, Y. C. Xin, S. Birudavolu, P. S. Wong, S. Huang, C.
P. Hains, and D. L. Huffaker, “Quantum dot lasers based on a
stacked and strain-compensated active region grown by
metal-organic chemical vapor deposition,” Applied Physics Letters,
Vol. 86, 193115 May 2005.
[167] M. Sugawara, N. Hatori,MIshida, H. Ebe, Y. Arakawa, T. Akiyama,
K. Otsubo, T. Yamamoto and Y. Nakata, “Recent progress in
self-assembled quantum-dot optical devices for optical
telecommunication: temperature-insensitive 10Gbs−1 directly
modulated lasers and 40Gbs−1 signal-regenerative amplifiers,” J.
Phys. D: Appl. Phys., Vol. 38, pp. 2126–2134, 2005.
198
[168] J. Yao, P. Gallion, W. Elsasser, G. Debarge, “Nonlinear gain and its
influence on the laser dynamics in single-quantum-well lasers
operating at the first and second quantized states,” IEEE Photonic
Technology Letters, Vol. 4, No. 11, Nov. 1992.
[169] 吳肇欣, ”非對稱多重量子井在半導體雷射與半導體光放大器的
特性研究和應用”, master thesis in National Taiwan University,
2004.
[170] Ching-Fuh Lin, Yi-Shin Su, and Bing-Ruey Wu, “Extremely
broadband tunable semiconductor lasers for optical communication,”
CLEO’01, Technical Digest, Baltimore, MD, USA, pp. 237-238,
2001.
[171] L.A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated
Circuits, Ch.5.
[172] R. Nagarajan, R. P.Mirin, T. E. Reynolds, and J. E. Bowers, “ High
speed quantum well lasers and carrier transport effect,” IEEE J.
Quantum Electron., Vol. 28, pp. 1990-2008, 1992.
[173] C. Y. Tsai, C. Y. Tsai, Y. H. Lo, R. M. Spencer, and L. F. Eastman,
“Nonlinear gain coefficients in semiconductor quantum-well lasers:
effect of carrier diffusion, capture, and escape.”, IEEE J. of Selected
Topics in Quantum Electron., Vol. 1, pp. 316-330, 1995.
[174] R. M. Spencer, J. Greenberg, L. F. Eastman, C. Y. Tsai, and S. S.
O’keefe, “High speed direct modulation of semiconductor lasers,”
from “High Speed Diode Lasers,” Editor: S. A. Gurevich, pp. 41-80,
World Scientific, Singapore, 1998.
[175] S. M. Sze, “Physics of Semiconductor Devices”, 2nd Ed., Wiley,
New York, 1981.
199
[176] S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “On the effects
of carrier diffusion and quantum capture in high speed modulation of
quantum well lasers”, Appl. Phys. Lett., Vol. 61, pp. 752-754, 1992.
[177] 吳秉睿, “Extremely Broadband Superluminescent Diode,” master
thesis in National Taiwan University, Ch5, 2000.
[178] M. Sugawara, K. Mukai, Y. Nakata, K. Otsubo, H. Ishilkawa, and S.
Member, “Performance and Physics of Quantum-Dot Lasers with
Self-Assembled Columnar-Shaped and 1.3-μm Emitting InGaAs
Quantum Dots”, IEEE Invited Paper pp. 462, IEEE J. Quantum
Electron., Vol. 6, No. 3, MAY/JUNE 2000.
[179] H. Jiang and J. Singh, “Strain distribution and electronic spectra of
InAs/GaAs self-assembled dots:An eight-band study”, Physical
Review B, Vol. 56, No. 8, pp. 4696, 15 Aug. 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33616-
dc.description.abstract隨著光通訊領域的發展,以及因應網路的需求和資訊傳輸量的增加,在本論文中我們利用設計過的量子點與量子井結構,來開發具有更寬發光頻寬特性,以及擁有更高直接調變速度、更寬調變頻寬的半導體雷射與半導體光放大器。
首先我們提出一種新的量測寬頻增益的方法,設計出新型的兩段式波導的量子點光放大器,使其可以在不需要外部雷射以及複雜的實驗架設之下,便可以量測到量子點光放大器的增益頻譜,並且得到一個正的增益值超過480nm以上的極寬頻增益,並且最大的增益值可以超過42.83cm-1。
另外,我們也透過實驗上的量測發現了具有第二量子化能階的量子點雷射,因其自由電子在本身傳導帶內部的量子化能階做躍遷,又這兩個能帶間的能隙很小,所以可以放出遠紅外光波段的波長,而目前在遠紅外光這個波段正是欠缺便宜且穩定的波源,想必在未來的發展性勢必相當大。
除此之外,我們藉由控制減短共振腔的長度,增加材料的損耗,或是降低斷面的反射量等方法,使得元件可以在第二量子化能階發出雷射光。我們利用這種發光機制,在實驗結果上發現,操作在第二量子化能階的元件,其頻寬可達2.78GHz,比第一量子化能階的元件高出約2.6倍。這個研究結果對於量子點雷射在直接調變上的應用來講是一個很重要的突破,有助於未來光通訊市場的發展和普及。然而我們更進一步的針對元件內部的載子與放光機制,去做理論上的研究與分析,發展出一套動態模型來解釋實驗結果,關於這部分目前也是尚未被研究討論過的。
最後,我們繼續量測非對稱量子井兩段式波導雷射的頻率響應,因為載子在不同量子井間互相轉移的過程,造成共振波長的快速切換,使得此結構雷射的直接調變速率可以達到更寬的調變頻寬,約6.04GHz,希望藉此來因應將來光通訊市場的發展和普及的需要。
zh_TW
dc.description.abstractWith the increase of blooming information and data transmission of internet, the perspective of fiber-optic communication becomes more and more prospect in the future. In this dissertation, we focus on the use and design of quantum well (QW) and quantum dot (QD) devices to achieve broadband emission characteristics and higher modulation bandwidth of semiconductor laser diodes (LD) and semiconductor optical amplifiers (SOA).
First, we propose a new simple method to measure the broadband gain spectrum with a two-section device. Without any other external tunable lasers and complicated setup, we measured broadband gain spectrum of quantum-dot amplifiers. The quantum dots give positive gain for the spectral range near 480nm, covering from 950nm to 1400nm. The maximum gain could be 42.83cm-1.
Besides, we find out the infrared emission in the second quantized state device. The reason is supposed to be the free electron’s intersubband transition in the conduction band. By the small energy band gap, the emission of the QDs has the infrared wavelength.
In Addition, we propose a new mechanism for direct modulation of laser diode by using second quantized state device. Lasing at the second quantized state can be induced by increasing the total cavity loss, which can be practically accomplished either by decreasing the length of cavity, increasing the material loss, or by decreasing the facet reflectivity. In our experiment, the bandwidth of the QD device lasing at the second quantized state highest could achieve 2.78GHz. Furthermore, it also enhanced the modulation speed over 2.6 times more than the first quantized state. In addition, we also analysis this result using theoretical model. It helps us to figure out the mechanism of the carriers and the photons.
Finally, we continue to measure the direct modulation of laser diode by using carrier redistribution inside nonidentical multiple quantum wells (MQWs). With proper design of the nonidentical MQW structure, a device with two-section waveguide Fabry-Perot laser diodes can be switched between two widely separated lasing wavelengths at high frequency. The switched intensity can have extinction ratio of 20dB within 5mA of current variation. Carriers redistribute inside nonidentical MQWs and contribute to different lasing wavelengths. Because the transport time between quantum wells is much smaller than the diffusion and drift time in SCH layer of carriers, the modulation bandwidth of two-section laser is expected to surpass the relaxation frequency of conventional laser diode. This new mechanism will greatly improve the transmitter speed and lower the cost in optical communication system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:50:41Z (GMT). No. of bitstreams: 1
ntu-95-R93943133-1.pdf: 2468151 bytes, checksum: d621e040631c80f353c82c40ce27ceea (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 簡介 1
第二章 半導體雷射與光放大器的基本特性量測與分析 7
2-1 簡介 7
2-1-1 奈米結構 7
2-1-2 基本特性的實驗量測之架設 10
2-2 量子井雷射與光放大器特性量測 14
2-2-1 量子井設計原理與元件結構 14
2-2-2 量子井雷射與光放大器的特性量測與分析 21
2-3 量子點雷射與光放大器特性量測 33
2-3-1 量子點設計原理與元件結構 33
2-3-2 量子點雷射與光放大器的特性量測與分析 38
2-4 結論 44
第三章 寬頻量子點半導體光放大器的增益頻譜量測 46
3-1 簡介 47
3-1-1 研究動機 47
3-1-2 使用兩段式元件量測增益頻譜之原理 50
3-2 量子點結構之寬頻半導體光放大器 54
3-2-1 量子點雷射的寬頻特性 54
3-2-2 量子點結構之設計與製作 55
3-3 實驗之架設與量測 60
3-4 實驗結果與討論 62
3-4-1 頻譜量測結果 62
3-4-2 增益頻譜之分析 66
3-5 結論 69
第四章 第二量子化能階之量子點雷射在兆赫輻射源上的應用 70
4-1 簡介 70
4-1-1 發展歷史 71
4-1-2 物理機制 73
4-1-3 兆赫輻射之應用 74
4-2 研究動機 75
4-2-1 量子串接雷射 77
4-2-2 量子點雷射 79
4-3 實驗系統架設 81
4-3-1 元件之固定與溫控 81
4-3-2 傅氏轉換紅外線光譜儀 83
4-4 實驗結果之分析與討論 87
4-5 結論 96
第五章 應用第二量子化能階的量子點雷射來增加調變速度 98
5-1 簡介 99
5-1-1 外部調變 100
5-1-2 直接調變 104
5-1-3 外部調變與直接調變之優缺點比較 106
5-2 量子點結構的設計與特性 108
5-3 實驗架設與量測結果 110
5-4 分析與討論 121
5-4-1 高頻小訊號反射效應 122
5-4-2 RC時間常數效應 127
5-5 理論模擬計算 131
5-5-1 差動增益模型 133
5-5-2 計算結果 137
5-6 結論 139
第六章 應用非對稱多重量子井結構在半導體雷射
的波長轉換與直接調變 143
6-1 簡介 144
6-2 非對稱量子井間載子移動之理論模型 146
6-3 元件之設計與製作 151
6-3-1 非對稱多重量子井結構之設計 151
6-3-2 兩段式直波導元件的製作 155
6-4 直流訊號的波長轉換量測 156
6-5 小訊號的高頻直接調變量測 164
6-6 結論 170
第七章 總結與未來展望 171
7-1 論文回顧 171
7-2 未來展望 176
附錄一 網路分析儀原理 179
參考文獻 180
dc.language.isozh-TW
dc.title半導體雷射與半導體光放大器的特性研究和應用zh_TW
dc.titleCharacteristics and Applications of Semiconductor Lasers and Semiconductor Optical Amplifiersen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅(chi-Hi Wu),黃天偉(Tian-Wei Huang)
dc.subject.keyword量子點,量子井,半導體,雷射,光放大器,增益,頻譜,調變,zh_TW
dc.subject.keywordQuantum-dot,Quantum-well,Semiconducter,Laser Diodes,Optical Amplifiers,Gain,Spectrum,Modulation,en
dc.relation.page199
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved