請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33589完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 瞿大雄 | |
| dc.contributor.author | Chun-Chu Chang | en |
| dc.contributor.author | 張君竹 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:49:03Z | - |
| dc.date.available | 2007-07-20 | |
| dc.date.copyright | 2006-07-20 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-16 | |
| dc.identifier.citation | [1] F. X. Sinnesbichler, H. Geltinger, and G. R. Olbrich, “A 38 GHz push-push oscillator based on 25 GHz ft BJTs,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 151-153, Apr. 1999.
[2] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966. [3] D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Components Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001. [4] D. Deslandes and K. Wu, “Integrated transition of coplanar to rectangular waveguides,” IEEE MTT-s Digest, vol. 12, pp. 619-622, May 2001. [5] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, “Dispersion characteristics of substrate integrated rectangular waveguide,” IEEE Microwave Wireless Component Lett., vol. 12, no. 9, pp.333-335, Sep. 2002. [6] Y. Cassivi, L. Perregrini, K. Wu, and G. Conciauro, “Low-cost and high-Q millimeter-wave resonator using substrate integrated waveguide technique,” Eur. Microwave Conf., Milano, Italy, 2002. [7] W. C. Lee, S. C. Lin, and C. K. C. Tzuang, “Planar realization of low phase noise 15/30 GHz oscillator/doubler using surface mount transistors,” IEEE Microwave Wireless Components Lett., vol. 13, no. 1, Jan. 2003. [8] Y. Cassivi and K. Wu, “Low cost microwave oscillator using substrate integrated waveguide cavity,” IEEE Microwave Wireless Components Lett., vol. 13, no. 2, pp.48-50, Feb. 2003. [9] H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a “laminated waveguide”,” IEEE Trans. on MTT, vol. 46, no. 12, pp.2438-2443, Dec. 1998. [10] A. M. Pavio and M. A. Smith, “A 20-40 GHz push-push dielectric resonator oscillator,” IEEE Trans. on MTT, vol. 33, no. 12, pp. 1346-1349, Dec. 1985. [11] S. Kudszus, W. H. Haydl, A. Tessmann, W. Bronner, and M. Schlechtweg, “Push-push oscillators for 94 and 140 GHz applications using standard pseudomorphic GaAs HEMTs,” 2001 IEEE MTT-s Digest, pp.1571-1574. [12] H. Xiao, T. Tanaka, and M. Aikawa, “Push-push oscillator with simplified circuit structure,” Electronic Lett., vol. 38, no. 24, pp. 1545-1546, Nov. 2002. [13] F. X. Sinnesbichler, “Hybrid millimeter-wave push-push oscillators using silicon germanium HBTs,” IEEE Trans. on MTT, vol. 51, no. 2, pp.422-430, Feb. 2003. [14] R. Tupynamba, E. Camargo, and F. S. Correra, “A HEMT harmonic oscillator stabilized by an X-band dielectric resonator,” 1991 IEEE MTT-s Digest, pp. 277-280. [15] D. M. Poazar, Microwave Engineering, 2nd edition, John Wiley & Sons, Inc., 1998. [16] E. Yablonovith, “Photinic bandgap structure,” J. Optical Soc. America B, vol. 10, pp.283-295, Feb. 1993. [17] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. on MTT, vol. 53, no. 1, pp. 66-73, Jan. 2005. [18] H. Li, W. Hong, T. J. Cui, K. Wu, Y. L. Zhang, and L. Yang, “Propagation characteristics of substrate integrated waveguide based on LTCC,” 2003 IEEE MTT-s Digest, pp. 2045-2048. [19] K. Kurokawa, “Some basic characteristics of broadband negative resistance oscillator circuits,” The Bell System Technical Journal, July 1969. [20] G. Gonzales, Microwave Transistor Amplifier: Analysis and Design, 2nd edition, Prentice Hall, 1997. [21] Y. Iyama, A. Iida, T. Takagi, and S. Urasaki, “Second-harmonic reflector type high gain FET frequency doubler operating in K-band,” 1989 IEEE MTT-s Digest, pp. 1291-1294. [22] 陳孝威, “2.4 GHz基板合成波導共振腔振盪器之設計與Q值和相位雜訊相關性分析”, 國立台灣大學電信工程研究所碩士論文, 2005. [23] Ansoft HFSS, version 9.2. [24] L. Dussopt, D. Guillois, and G.. M. Rebeiz, “A low phase noise silicon 9 GHz VCO and an 18 GHz push-push oscillator,” 2002 IEEE MTT-s Digest, pp. 695-698. [25] Agilent ADS 2003A. [26] J. F. Mojica, Y. Cassivi, and K. Wu, “Low-cost RF and microwave source design using substrate integrated waveguide technique,” 2004 IEEE Radio and Wireless Conf. [27] NEC Compound Semiconductor, Ltd. (http://www.ncsd.necel.com) [28] E. Camargo, R. Soares, R. A. Perichon, and M. Goloubkoff, “Sources of nonlinearity in GaAs MESFET frequency multipliers,” 1983 IEEE MTT-s Digest, pp. 343-345. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33589 | - |
| dc.description.abstract | 為了滿足現今對於無線通訊應用與日劇增的需求,毫米波系統中各組件的研發成為非常重要。振盪器在射頻電路中往往扮演著關鍵的角色,然而,受到元件可操作頻率的限制,以及元件隨頻率上升而增加的寄生效應,要設計一個高度穩定的高頻訊號源,則相當具有挑戰性。諧波振盪器已證明是一個產生高頻訊號源的有效電路;另外,擁有低損耗及高度微波毫米波電路整合特性的基板合成波導技術,也在最近被提出,因此,為了達到低相位雜訊的響應,基板合成波導諧振器可應用於諧波振盪器的設計。
本論文採用兩種諧波振盪器架構:其一為推-推式振盪器,另一者為振盪倍頻器(osciplier)。藉由適當地激發諧振器之諧振模態,則可利用該諧振模態的特性,設計所需的諧波振盪器。在推-推式振盪器中,其兩個子振盪器之耦合網路為一基板合成波導諧振器,其TE102模態設計於15 GHz用以造成基頻振盪。而在振盪倍頻器中,作為振盪器迴授網路的基板合成波導諧振器,其15 GHz諧振頻率設計在TE101模態。這兩個振盪器都設計成輸出30 GHz訊號,也就是二次諧波的頻率,並且以平面印刷電路板製程實現。 | zh_TW |
| dc.description.abstract | To fulfill the increasing demand for wireless communication applications nowadays, the research and development of millimeter-wave components and modules are becoming essential. Oscillators are key components in such radio frequency (RF) systems. However, generating highly stable signals at high frequencies is challenging because of the frequency limitation of device and the rising influences of device parasitic effects. Harmonic oscillators have been proven to be an efficient way to generate high frequency signals; furthermore, the substrate integrated waveguide (SIW) technique was proposed recently, which possesses the properties of low-loss and high-density integration of microwave/millimeter-wave circuits. Thus, a SIW cavity resonator can be incorporated into the oscillator design to achieve a low phase noise response.
In this thesis, two topologies of harmonic oscillators are employed: one is the push-push oscillator and the other one is the osciplier. Then, by properly exciting the resonant mode of the cavity resonator, certain mode characteristics are applicable to the oscillator design. In the push-push oscillator, a SIW cavity resonator of its TE102 mode at 15 GHz for the fundamental oscillation is designed and acts as the coupling network of the two sub-oscillators. In the osciplier, the SIW cavity resonator is, on the other hand, designed with its TE101 mode at 15 GHz and acts as the feedback network of the oscillator. Both harmonic oscillators are designed to generate 30 GHz output signals, which are the second harmonic, and fabricated in printed-circuit-board (PCB) process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:49:03Z (GMT). No. of bitstreams: 1 ntu-95-R93942017-1.pdf: 6715055 bytes, checksum: 66944471189cae62c4d548eaeb1f4992 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract
中文摘要 Contents…………………………………………………………………i List of Figures & Tables…………………………………………iii Chapter 1 Introduction………………………………………………1 1.1 Motivation…………………………………………………………1 1.2 Literature survey………………………………………………3 1.3 Chapter outline…………………………………………………3 Chapter 2 Basic Principles…………………………………………4 2.1 Substrate integrated waveguide cavity resonator………4 2.1.1 Rectangular waveguide cavity resonator…………………5 2.1.2 Substrate integrated waveguide…………………………10 2.2 Free-running oscillator………………………………………14 2.2.1 Negative resistance oscillator…………………………14 2.2.2 Feedback oscillator…………………………………………16 2.3 Harmonic oscillator……………………………………………18 2.3.1 Circuit topologies…………………………………………18 2.3.2 Push-push oscillator………………………………………18 2.3.3 Osciplier……………………………………………………20 Chapter 3 30 GHz Harmonic Oscillators…………………………22 3.1 SIW cavity resonator…………………………………………22 3.1.1 Feeding structure……………………………………………22 3.1.2 Cavity resonator design……………………………………24 A. Cavity resonator for TE102 mode at 15 GHz………………28 B. Cavity resonator for TE101 mode at 15 GHz………………34 3.1.3 Experimental results………………………………………41 3.2 30 GHz push-push oscillator…………………………………45 3.2.1 Circuit design………………………………………………45 3.2.2 Experimental results………………………………………55 3.3 30 GHz osciplier………………………………………………57 3.3.1 Circuit design………………………………………………57 3.3.2 Experimental results………………………………………63 Chapter 4 Conclusion………………………………………………65 References……………………………………………………………66 Appendices A NE4210S01 transistor datasheet………………………………69 B NE3210S01 transistor datasheet………………………………80 | |
| dc.language.iso | en | |
| dc.subject | 振盪倍頻器 | zh_TW |
| dc.subject | 諧波振盪器 | zh_TW |
| dc.subject | 基板合成波導 | zh_TW |
| dc.subject | 推-推式振盪器 | zh_TW |
| dc.subject | push-push oscillator | en |
| dc.subject | SIW | en |
| dc.subject | osciplier | en |
| dc.subject | harmonic oscillator | en |
| dc.subject | substrate integrated waveguide | en |
| dc.title | 使用基板合成波導諧振器之30GHz諧波振盪器設計 | zh_TW |
| dc.title | 30 GHz Harmonic Oscillator Design Using Substrate Integrated Waveguide Cavity Resonator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王臺模,鄧維康,陳宗志,黃建彰 | |
| dc.subject.keyword | 諧波振盪器,基板合成波導,推-推式振盪器,振盪倍頻器, | zh_TW |
| dc.subject.keyword | harmonic oscillator,substrate integrated waveguide,push-push oscillator,osciplier,SIW, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 6.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
