請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33573完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳義雄 | |
| dc.contributor.author | Tsai- Fu Hsieh | en |
| dc.contributor.author | 謝才富 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:48:07Z | - |
| dc.date.available | 2011-08-08 | |
| dc.date.copyright | 2011-08-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | 1. Clark JH, markaverich BM. Actions of ovarian steroid hormones. The Physiology of Reproduction Raven, N. Y.; 1988. p. 675-711.
2. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol 1975;122(2):262-3. 3. menstrual cycle. Encyclopædia Britannica, Inc.; 2008. 4. Rugh R. its reproduction and development. The Mouse. N. Y.: Oxford University Press Inc.; 1990. p. 1-43. 5. Walmer DK, Wrona MA, Hughes CL, Nelson KG. Lactoferrin expression in the mouse reproductive tract during the natural estrous cycle: correlation with circulating estradiol and progesterone. Endocrinology 1992;131(3):1458-66. 6. Albers HJ, Neves EC. The protein components of rat uterine fluid. An analysis of its antigens by immuno-electrophoresis and Ouchterlonv gel diffusion technic. Fertil Steril 1961;12:142-50. 7. Choudhuri R, Wood GW. Leukocyte distribution in the pseudopregnant mouse uterus. Am J Reprod Immunol 1992;27(1-2):69-76. 8. Cooke PS, Uchima FD, Fujii DK, Bern HA, Cunha GR. Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stroma. Proc Natl Acad Sci U S A 1986;83(7):2109-13. 9. Mueller GC, Gorski J, Aizawa Y. The role of protein synthesis in early estrogen action. Proc Natl Acad Sci U S A 1961;47:164-9. 10. Spaziani E, Szego CM. The influence of estradiol and cortisol on uterine histamine of the ovariectomized rat. Endocrinology 1958;63(5):669-78. 11. Roberts S, Szego CM. Steroid interaction in the metabolism of reproductive target organs. Physiol Rev 1953;33(4):593-629. 12. Meier DA, Garner CW. Estradiol stimulation of glucose transport in rat uterus. Endocrinology 1987;121(4):1366-74. 13. Kuivanen PC, Capulong RB, Harkins RN, DeSombre ER. The estrogen-responsive 110K and 74K rat uterine secretory proteins are structurally related to complement component C3. Biochem Biophys Res Commun 1989;158(3):898-905. 14. Li SH, Huang HL, Chen YH. Ovarian steroid-regulated synthesis and secretion of complement C3 and factor B in mouse endometrium during the natural estrous cycle and pregnancy period. Biol Reprod 2002;66(2):322-32. 15. Teng CT, Pentecost BT, Chen YH, Newbold RR, Eddy EM, McLachlan JA. Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 1989;124(2):992-9. 16. Braundmeier AG, Nowak RA. Cytokines regulate matrix metalloproteinases in human uterine endometrial fibroblast cells through a mechanism that does not involve increases in extracellular matrix metalloproteinase inducer. Am J Reprod Immunol 2006;56(3):201-14. 17. Inagaki N, Stern C, McBain J, Lopata A, Kornman L, Wilkinson D. Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer. Hum Reprod 2003;18(3):608-15. 18. Wyne KL, Woollett LA. Transport of maternal LDL and HDL to the fetal membranes and placenta of the Golden Syrian hamster is mediated by receptor-dependent and receptor-independent processes. J Lipid Res 1998;39(3):518-30. 19. Brown TL, Moulton BC, Witte DP, Swertfeger DK, Harmony JA. Apolipoprotein J/clusterin expression defines distinct stages of blastocyst implantation in the mouse uterus. Biol Reprod 1996;55(4):740-7. 20. Chu ST, Huang HL, Chen JM, Chen YH. Demonstration of a glycoprotein derived from the 24p3 gene in mouse uterine luminal fluid. Biochem J 1996;316 ( Pt 2):545-50. 21. Huang HL, Chu ST, Chen YH. Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period. J Endocrinol 1999;162(1):11-9. 22. Katz J, Finlay TH, Tom C, Levitz M. A new hormone-response hydrolase activity in the mouse uterus. Endocrinology 1980;107(6):1725-30. 23. Korach KS, Harris SE, Carter DB. Uterine proteins influenced by estrogen exposure. Analysis by two-dimensional gel electrophoresis. Mol Cell Endocrinol 1981;21(3):243-54. 24. Finlay TH, Katz J, Levitz M. Purification and properties of an estrogen-stimulated hydrolase from mouse uterus. J Biol Chem 1982;257(18):10914-9. 25. Aitken RJ. Changes in the protein content of mouse uterine flushings during normal pregnancy and delayed implantation, and after ovariectomy and oestradiol administration. J Reprod Fertil 1977;50(1):29-36. 26. Surani MA. Radiolabelled rat uterine luminal proteins and their regulation by oestradiol and progesterone. J Reprod Fertil 1977;50(2):289-96. 27. Fishel SB. Analysis of mouse uterine proteins at pro-oestrus, during early pregnancy and after administration of exogenous steroids. J Reprod Fertil 1979;55(1):91-100. 28. Maier DB, Newbold RR, McLachlan JA. Prenatal diethylstilbestrol exposure alters murine uterine responses to prepubertal estrogen stimulation. Endocrinology 1985;116(5):1878-86. 29. Degen GH, Bolt HM. Endocrine disruptors: update on xenoestrogens. Int Arch Occup Environ Health 2000;73(7):433-41. 30. Walter P, Green S, Greene G. Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci U S A 1985;82(23):7889-93. 31. Conneely OM, Sullivan WP, Toft DO. Molecular cloning of the chicken progesterone receptor. Science 1986;233(4765):767-70. 32. Laumas KR, Farooq A. The uptake in vivo of [1,2-3-H]progesterone by the brain and genital tract of the rat. J Endocrinol 1966;36(1):95-6. 33. Peck EJ, Jr., Burgner J, Clark JH. Estrophilic binding sites of the uterus. Relation to uptake and retention of estradiol in vitro. Biochemistry 1973;12(23):4596-603. 34. DeMayo FJ, Zhao B, Takamoto N, Tsai SY. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci 2002;955:48-59; discussion 86-8, 396-406. 35. Stauffer SR, Coletta CJ, Tedesco R. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-alpha-selective agonists. J Med Chem 2000;43(26):4934-47. 36. Kraichely DM, Sun J, Katzenellenbogen JA, Katzenellenbogen BS. Conformational changes and coactivator recruitment by novel ligands for estrogen receptor-alpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology 2000;141(10):3534-45. 37. Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA. Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem 2001;44(24):4230-51. 38. Korach KS, Chae K, Levy LA, Duax WL, Sarver PJ. Diethylstilbestrol metabolites and analogs. Stereochemical probes for the estrogen receptor binding site. J Biol Chem 1989;264(10):5642-7. 39. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 1971;284(15):878-81. 40. Reagan JW, Herbst AL. A correlative nuclear DNA and histologic study of genital squamous lesions in DES exposed progeny. Obstet Gynecol Surv 1979;34(11):849-50. 41. Herbst AL. DES-associated clear cell adenocarcinoma of the vagina and cervix. Obstet Gynecol Surv 1979;34(11):844. 42. Nishida M, Kasahara K, Kaneko M, Iwasaki H, Hayashi K. [Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors]. Nippon Sanka Fujinka Gakkai Zasshi 1985;37(7):1103-11. 43. Naciff JM, Khambatta ZS, Thomason RG. The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci 2009;107(1):40-55. 44. Falany JL, Falany CN. Regulation of estrogen sulfotransferase in human endometrial adenocarcinoma cells by progesterone. Endocrinology 1996;137(4):1395-401. 45. Le Guevel R, Pakdel F. Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods. Hum Reprod 2001;16(5):1030-6. 46. Wober J, Weisswange I, Vollmer G. Stimulation of alkaline phosphatase activity in Ishikawa cells induced by various phytoestrogens and synthetic estrogens. J Steroid Biochem Mol Biol 2002;83(1-5):227-33. 47. Holinka CF, Hata H, Kuramoto H, Gurpide E. Responses to estradiol in a human endometrial adenocarcinoma cell line (Ishikawa). J Steroid Biochem 1986;24(1):85-9. 48. Albert JL, Sundstrom SA, Lyttle CR. Estrogen regulation of placental alkaline phosphatase gene expression in a human endometrial adenocarcinoma cell line. Cancer Res 1990;50(11):3306-10. 49. Holinka CF, Hata H, Kuramoto H, Gurpide E. Effects of steroid hormones and antisteroids on alkaline phosphatase activity in human endometrial cancer cells (Ishikawa line). Cancer Res 1986;46(6):2771-4. 50. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 1990;127(6):2757-62. 51. Leong H, Riby JE, Firestone GL, Bjeldanes LF. Potent ligand-independent estrogen receptor activation by 3,3'-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathways. Mol Endocrinol 2004;18(2):291-302. 52. Punyadeera C, Dassen H, Klomp J. Oestrogen-modulated gene expression in the human endometrium. Cell Mol Life Sci 2005;62(2):239-50. 53. Wagner J, Lehmann L. Estrogens modulate the gene expression of Wnt-7a in cultured endometrial adenocarcinoma cells. Mol Nutr Food Res 2006;50(4-5):368-72. 54. Kasik J, Rice E. A novel complementary deoxyribonucleic acid is abundantly and specifically expressed in the uterus during pregnancy. Am J Obstet Gynecol 1997;176(2):452-6. 55. Zhang J, Rajkumar N, Hooi SC. Characterization and expression of the mouse pregnant specific uterus protein gene and its rat homologue in the intestine and uterus. Biochim Biophys Acta 2000;1492(2-3):526-30. 56. Zhang J, Wong H, Ramanan S, Cheong D, Leong A, Hooi SC. The proline-rich acidic protein is epigenetically regulated and inhibits growth of cancer cell lines. Cancer Res 2003;63(20):6658-65. 57. Xia X, Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered 2001;92(4):371-3. 58. Levitzki A, Willingham M, Pastan I. Evidence for participation of transglutaminase in receptor-mediated endocytosis. Proc Natl Acad Sci U S A 1980;77(5):2706-10. 59. Huggins C, Jensen EV. The depression of estrone-induced uterine growth by phenolic estrogens with oxygenated functions at positions 6 or 16: the impeded estrogens. J Exp Med 1955;102(3):335-46. 60. Julian J, Carson DD, Glasser SR. Polarized rat uterine epithelium in vitro: constitutive expression of estrogen-induced proteins. Endocrinology 1992;130(1):79-87. 61. McMaster MT, Teng CT, Dey SK, Andrews GK. Lactoferrin in the mouse uterus: analyses of the preimplantation period and regulation by ovarian steroids. Mol Endocrinol 1992;6(1):101-11. 62. Enmark E, Gustafsson JA. Oestrogen receptors - an overview. J Intern Med 1999;246(2):133-8. 63. Parker MG, Arbuckle N, Dauvois S, Danielian P, White R. Structure and function of the estrogen receptor. Ann N Y Acad Sci 1993;684:119-26. 64. Bramlett KS, Wu Y, Burris TP. Ligands specify coactivator nuclear receptor (NR) box affinity for estrogen receptor subtypes. Mol Endocrinol 2001;15(6):909-22. 65. Watanabe H, Suzuki A, Kobayashi M, Lubahn DB, Handa H, Iguchi T. Similarities and differences in uterine gene expression patterns caused by treatment with physiological and non-physiological estrogens. J Mol Endocrinol 2003;31(3):487-97. 66. Galloway CJ, Dean GE, Marsh M, Rudnick G, Mellman I. Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc Natl Acad Sci U S A 1983;80(11):3334-8. 67. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422(6927):37-44. 68. Phonphok Y, Rosenthal KS. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines. FEBS Lett 1991;281(1-2):188-90. 69. Block K, Kardana A, Igarashi P, Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system. FASEB J 2000;14(9):1101-8. 70. Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog 2003;38(2):78-84. 71. Li S, Ma L, Chiang T. Promoter CpG methylation of Hox-a10 and Hox-a11 in mouse uterus not altered upon neonatal diethylstilbestrol exposure. Mol Carcinog 2001;32(4):213-9. 72. Yoshida A, Newbold RR, Dixon D. Effects of neonatal diethylstilbestrol (DES) exposure on morphology and growth patterns of endometrial epithelial cells in CD-1 mice. Toxicol Pathol 1999;27(3):325-33. 73. Lepourcelet M, Tou L, Cai L. Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development 2005;132(2):415-27. 74. Tou L, Liu Q, Shivdasani RA. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol Cell Biol 2004;24(8):3132-9. 75. Huang WW, Yin Y, Bi Q. Developmental diethylstilbestrol exposure alters genetic pathways of uterine cytodifferentiation. Mol Endocrinol 2005;19(3):669-82. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33573 | - |
| dc.description.abstract | 利用二維電泳比較由人工合成己烯雌酚 (DES, diethylstilbesterol) 誘導幼鼠所產生之子宮液與正常成鼠於動情週期所產生之子宮液兩者蛋白質的成分,發現一個分子量為 14 kDa 、等電點為 4.6 的蛋白於成鼠表現,但於 DES 誘導的幼鼠沒有表現。由 MALDI-Q-TOF 質譜與 N端分析,證實此一蛋白質為 proline-rich acidic protein (PRAP)。
檢視成鼠性腺,Prap mRNA僅於子宮內膜細胞表現。於動情週期中, Prap mRNA從動情前期 (proestrus) 開始表現,於動情期 (estrus) 表現明顯增加,至早期動情後期 (metestrus I) 達到最高峰,於後期動情後期 (metestrus II) 快速遞減,最後於動情間期 (diestrus) 則幾乎沒有表現。 對未成熟的小鼠施予雌性素 (17 β-estradiol) (0.01- 10 μg/g body weight) 三天後,皆於子宮中檢視到Prap mRNA 與PRAP蛋白質的表現,但表現量隨著雌性素劑量增多而減少。單獨施打黃體素 (progesterone) 並不引發Prap 的表現,共同施打雌性素和黃體素,並沒有抑制雌性素的刺激。進一步證實Prap 受雌性素的刺激和雌性素α亞型有關。三週大幼鼠施予連續三天DES (0.1 μg/g body weight) 誘導的子宮液沒有發現PRAP。若先施打DES於未成熟小鼠,待其年齡到達成熟週數,Prap 基因在子宮的表現,相對於正常成鼠也顯著減少。 重組PRAP 蛋白外加於培養液會內吞至人類子宮內膜腺癌細胞 (Ishikawa cells),雌性素會提高人類子宮內膜腺癌細胞的鹼性磷酸酶酵素活性及其反應基因,單獨外加重組PRAP 蛋白並無影響,若同時加入雌性素和PRAP, PRAP 加強雌性素所刺激的鹼性磷酸酶酵素活性及其反應基因。 | zh_TW |
| dc.description.abstract | Mice were used as experimental animals to study the functional role of uterine PRAP and how its expression is regulated by ovarian steroids. Soluble proteins in the uterine luminal fluid (ULF) of estrous females were resolved by 2-D gel electrophoresis. The protein spot corresponding to PRAP on the gel slab was identified by proteomic analysis. However, PRAP was absent in the ULF of DES- treated immature mice. Among the sexual glands of adults, both PRAP and its transcript were exclusively expressed in the endometrial epithelium of estrous females. Uterine Prap expression changed during the estrous cycle, in which the transcript levels progressively increased from proestrus via estrus to early metestrus, after which they rapidly declined via late metestrus to a very low level in diestrus. Daily injection of estradiol (E2) at a dose of 0.1 μg•g-1•day-1 to immature females for 3 consecutive days markedly stimulated uterine Prap transcription, whereas transcription was not initiated in the animals that received an equal dose of diethylstilbestrol dipropionate (DES). Relative to the normal estrus female, prepubertal DES exposure decreases remarkedly in the uterine Prap expression when the animals became sexually matured. The E2-stimulated Prap transcription involved the α-type estrogen receptor; at higher E2 doses, a lower level of uterine Prap mRNA and a lower amount of PRAP protein in ULF were detected. Using the Ishikawa cell line as a surrogate model of endometrial epithelium, we demonstrated that exogenous PRAP in the milieu rapidly internalizes into the cells to enhance endometrial estrogen responsiveness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:48:07Z (GMT). No. of bitstreams: 1 ntu-100-D93b46011-1.pdf: 4870583 bytes, checksum: ffab0b62751747373062b0eed0b5da9b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 i 謝辭 ii 中文摘要 iii Abstract iv 第一章 概論 1 生殖系統 1 雌性生殖 2 子宮液生成及相關重要研究 4 雌性素受體 5 DES之介紹 6 人類子宮內膜腺癌細胞株 6 Proline-rich acidic protein (PRAP) 簡介與相關研究 7 主要研究方向與實驗背景 8 第二章 材料與方法 9 實驗材料 9 實驗方法 9 一、小白鼠子宮組織及子宮液的樣品製備 9 1.1 類固醇激素的處理 9 1.2 動情週期各時期之篩選 9 1.3 類雌性素作用探討 10 二、蛋白質的分析方法 10 2.1 蛋白質定量 10 2.2 二維電泳 (Two-dimension electrophoresis) 11 2.3 SDS-聚丙烯醯胺膠體電泳 13 2.4 蛋白質染色分析 15 2.5 MALDI –Q – TOF 蛋白質樣品處理 17 2.6 N- 端定序 18 三、分子生物學相關研究 19 3.1 Total RNA 抽取 19 3.2 RNA品質的檢定: 20 3.3 北方點墨法 (Northern blotting) 21 3.4 反轉錄-聚合酶連鎖反應 (RT-PCR) 25 3.5 即時聚合酶鏈反應 (Real-time PCR) 26 3.6 雷射顯微擷取儀 (Laser capture microdissection) 27 3.7 Computational analysis 演化樹分析 28 四、以基因重組技術表現 PRAP 28 4.1 聚合酶連鎖反應 28 4.2 DNA 片段溶離 29 4.3 限制酶反應 29 4.4 DNA 接合反應 30 4.5 質體轉型 (Transformation) 30 4.6 表現載體之誘導 31 4.7 純化PRAP表現蛋白 31 五、蛋白質之偵測 32 5.1製備抗體 32 5.2 西方墨點法 33 5.3 免疫組織化學法 34 六、人類子宮內膜腺癌細胞株細胞實驗 35 6.1 細胞培養 35 6.2 鹼性磷酸酶酵素活性測定 36 6.3 雌性素活性反應基因偵測 36 6.4 PRAP 蛋白標記 37 6.5 PRAP 內吞作用 38 七、統計分析 39 第三章 結果 40 一、比較成鼠和DES刺激幼鼠之子宮液蛋白 40 1.1 子宮液蛋白的解析 40 1.2 基因重組技術表現PRAP及抗體之製備 40 1.3 子宮分泌PRAP之偵測 41 1.4 Prap 之序列分析 41 二、證明Prap於子宮內膜細胞表現 42 2.1 Prap基因在小鼠性器官中的組織分布 42 2.2 Prap基因在子宮的表現位置 42 三、 Prap於子宮動情週期中的表現 43 3.1 Prap於動情週期之變化 43 3.2 Prap於各動情週期之表現位置 43 四、 評估卵巢類固醇調控子宮內 Prap 的表現 43 4.1 Prap 與類固醇激素的關係 43 4.2 Prap在類固醇激素刺激之子宮表現位置 44 4.3 雌性素對 Prap 表現的影響 44 4.4 Prap 表現與雌性素受體之探討 45 五、尋找 PRAP的生殖功能 45 5.1 PRAP 的內吞實驗 45 5.2 外加 PRAP 會強化E2刺激Ishikawa cells所提升的鹼性磷酸酶酵素活性 46 5.3 PRAP 對於雌性素反應基因的之影響 46 六、己烯雌酚刺激幼鼠會影響成鼠子宮內 Prap 的表現 46 第四章 實驗討論 48 一、卵巢類固醇激素與子宮中 Prap 表現的關係 48 二、雌性素受體與Prap 表現的關聯性 49 三、PRAP 的內吞作用意義 49 四、己烯雌酚與小白鼠 Prap 之關聯性 50 圖次 52 附圖 82 附表 87 參考文獻 88 附錄 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鹼性磷酸酶 | zh_TW |
| dc.subject | 己烯雌酚 | zh_TW |
| dc.subject | Prap | zh_TW |
| dc.subject | 子宮內膜腺癌細胞 | zh_TW |
| dc.subject | 酵素活性 | zh_TW |
| dc.subject | 內吞作用 | zh_TW |
| dc.subject | α-type estrogen receptor | en |
| dc.subject | diethylstilbestrol | en |
| dc.subject | uterine luminal fluid | en |
| dc.subject | Ishikawa cell line | en |
| dc.subject | estrogen responsiveness | en |
| dc.title | 一個多脯胺酸酸性蛋白在子宮內膜細胞的轉錄調控和加強該細胞對雌性素反應的能力 | zh_TW |
| dc.title | The estrogen-dependent transcription of an endometrial proline-rich acidic protein PRAP and its ability to enhance endometrial estrogen responsiveness | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 潘榮隆,梁博煌,李明亭,黃彥華,李勝祥,林翰佳 | |
| dc.subject.keyword | 己烯雌酚,Prap,子宮內膜腺癌細胞,內吞作用,鹼性磷酸酶,酵素活性, | zh_TW |
| dc.subject.keyword | uterine luminal fluid,diethylstilbestrol,α-type estrogen receptor,estrogen responsiveness,Ishikawa cell line, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
