Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智芬(Zee-Fen Chang)
dc.contributor.authorPi-Chiang Hsuen
dc.contributor.author許弼強zh_TW
dc.date.accessioned2021-06-13T04:46:42Z-
dc.date.available2006-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citation1 Takai, Y., Sasaki, T. and Matozaki, T. (2001) Small GTP-binding proteins. Physiol Rev 81, 153-208
2 Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in cell biology. Nature 420, 629-635
3 Mackay, D. J. and Hall, A. (1998) Rho GTPases. J Biol Chem 273, 20685-20688
4 Van Aelst, L. and D'Souza-Schorey, C. (1997) Rho GTPases and signaling networks. Genes Dev 11, 2295-2322
5 Aspenstrom, P. (1999) Effectors for the Rho GTPases. Curr Opin Cell Biol 11, 95-102
6 Su, L. F., Knoblauch, R. and Garabedian, M. J. (2001) Rho GTPases as modulators of the estrogen receptor transcriptional response. J Biol Chem 276, 3231-3237
7 Charron, F., Tsimiklis, G., Arcand, M., Robitaille, L., Liang, Q., Molkentin, J. D., Meloche, S. and Nemer, M. (2001) Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev 15, 2702-2719
8 Muller, J. M., Metzger, E., Greschik, H., Bosserhoff, A. K., Mercep, L., Buettner, R. and Schule, R. (2002) The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. Embo J 21, 736-748
9 Chihara, K., Amano, M., Nakamura, N., Yano, T., Shibata, M., Tokui, T., Ichikawa, H., Ikebe, R., Ikebe, M. and Kaibuchi, K. (1997) Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 272, 25121-25127
10 Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T. and Gutkind, J. S. (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137-1146
11 Alberts, A. S., Geneste, O. and Treisman, R. (1998) Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92, 475-487
12 Marinissen, M. J., Chiariello, M. and Gutkind, J. S. (2001) Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 15, 535-553
13 Miralles, F., Posern, G., Zaromytidou, A. I. and Treisman, R. (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329-342
14 Leung, T., Manser, E., Tan, L. and Lim, L. (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270, 29051-29054
15 Nakagawa, O., Fujisawa, K., Ishizaki, T., Saito, Y., Nakao, K. and Narumiya, S. (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392, 189-193
16 Riento, K. and Ridley, A. J. (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4, 446-456
17 Mueller, B. K., Mack, H. and Teusch, N. (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4, 387-398
18 Leung, T., Chen, X. Q., Manser, E. and Lim, L. (1996) The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16, 5313-5327
19 Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. Embo J 15, 2208-2216
20 Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano, T., Kaibuchi, K. and Ito, M. (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272, 12257-12260
21 Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A. and Olson, M. F. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3, 339-345
22 Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J. and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3, 346-352
23 Feng, J., Ito, M., Kureishi, Y., Ichikawa, K., Amano, M., Isaka, N., Okawa, K., Iwamatsu, A., Kaibuchi, K., Hartshorne, D. J. and Nakano, T. (1999) Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 274, 3744-3752
24 Coleman, M. L. and Olson, M. F. (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9, 493-504
25 Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509-514
26 Lai, J. M., Lu, C. Y., Yang-Yen, H. F. and Chang, Z. F. (2001) Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochem J 359, 227-233
27 Ausio, J. and Van Holde, K. E. (1988) The histones of the sperm of Spisula solidissima include a novel, cysteine-containing H-1 histone. Cell Differ 23, 175-189
28 Wolffe, A. P. (1995) Centromeric chromatin. Histone deviants. Curr Biol 5, 452-454
29 Mymryk, J. S., Fryer, C. J., Jung, L. A. and Archer, T. K. (1997) Analysis of chromatin structure in vivo. Methods 12, 105-114
30 Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260
31 Bottomley, M. J. (2004) Structures of protein domains that create or recognize histone modifications. EMBO Rep 5, 464-469
32 Wong, J., Patterton, D., Imhof, A., Guschin, D., Shi, Y. B. and Wolffe, A. P. (1998) Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. Embo J 17, 520-534
33 Wolffe, A. P. (1999) Architectural regulations and Hmg1. Nat Genet 22, 215-217
34 Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349-352
35 Sterner, D. E. and Berger, S. L. (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459
36 Zhang, Y. and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15, 2343-2360
37 Nowak, S. J. and Corces, V. G. (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20, 214-220
38 Davie, J. R. and Murphy, L. C. (1990) Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29, 4752-4757
39 Nathan, D., Sterner, D. E. and Berger, S. L. (2003) Histone modifications: Now summoning sumoylation. Proc Natl Acad Sci U S A 100, 13118-13120
40 Adamietz, P. and Rudolph, A. (1984) ADP-ribosylation of nuclear proteins in vivo. Identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH 7974 cells. J Biol Chem 259, 6841-6846
41 Cheung, W. L., Ajiro, K., Samejima, K., Kloc, M., Cheung, P., Mizzen, C. A., Beeser, A., Etkin, L. D., Chernoff, J., Earnshaw, W. C. and Allis, C. D. (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507-517
42 Fischle, W., Wang, Y. and Allis, C. D. (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15, 172-183
43 Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074-1080
44 Berger, S. L. (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12, 142-148
45 Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120
46 Margueron, R., Trojer, P. and Reinberg, D. (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15, 163-176
47 Nightingale, K. P., O'Neill, L. P. and Turner, B. M. (2006) Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16, 125-136
48 Milner, C. M. and Campbell, R. D. (1993) The G9a gene in the human major histocompatibility complex encodes a novel protein containing ankyrin-like repeats. Biochem J 290 ( Pt 3), 811-818
49 Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. and Rauscher, F. J., 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16, 919-932
50 Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W. W., Wilm, M., Aasland, R. and Stewart, A. F. (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. Embo J 20, 7137-7148
51 Tachibana, M., Sugimoto, K., Fukushima, T. and Shinkai, Y. (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276, 25309-25317
52 Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P., Denu, J. M. and Allis, C. D. (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5, 905-915
53 Adam, S. A., Marr, R. S. and Gerace, L. (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111, 807-816
54 Martic, G., Karetsou, Z., Kefala, K., Politou, A. S., Clapier, C. R., Straub, T. and Papamarcaki, T. (2005) Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J Biol Chem 280, 16143-16150
55 Ayrault, O., Andrique, L., Larsen, C. J. and Seite, P. (2004) Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 23, 8097-8104
56 Lai, J. M., Hsieh, C. L. and Chang, Z. F. (2003) Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction. J Cell Sci 116, 3491-3501
57 Zhen, Y. Y., Libotte, T., Munck, M., Noegel, A. A. and Korenbaum, E. (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115, 3207-3222
58 Kim, Y. B., Yu, J., Lee, S. Y., Lee, M. S., Ko, S. G., Ye, S. K., Jong, H. S., Kim, T. Y., Bang, Y. J. and Lee, J. W. (2005) Cell adhesion status-dependent histone acetylation is regulated through intracellular contractility-related signaling activities. J Biol Chem 280, 28357-28364
59 Hill, C. S., Wynne, J. and Treisman, R. (1994) Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. Embo J 13, 5421-5432
60 Price, M. A., Hill, C. and Treisman, R. (1996) Integration of growth factor signals at the c-fos serum response element. Philos Trans R Soc Lond B Biol Sci 351, 551-559
61 Zohar, M., Teramoto, H., Katz, B. Z., Yamada, K. M. and Gutkind, J. S. (1998) Effector domain mutants of Rho dissociate cytoskeletal changes from nuclear signaling and cellular transformation. Oncogene 17, 991-998
62 Hill, C. S., Wynne, J. and Treisman, R. (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159-1170
63 Wei, L., Zhou, W., Croissant, J. D., Johansen, F. E., Prywes, R., Balasubramanyam, A. and Schwartz, R. J. (1998) RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J Biol Chem 273, 30287-30294
64 Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P. and Owens, G. K. (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276, 341-347
65 Liu, H. W., Halayko, A. J., Fernandes, D. J., Harmon, G. S., McCauley, J. A., Kocieniewski, P., McConville, J., Fu, Y., Forsythe, S. M., Kogut, P., Bellam, S., Dowell, M., Churchill, J., Lesso, H., Kassiri, K., Mitchell, R. W., Hershenson, M. B., Camoretti-Mercado, B. and Solway, J. (2003) The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am J Respir Cell Mol Biol 29, 39-47
66 Tanaka, T., Nishimura, D., Wu, R. C., Amano, M., Iso, T., Kedes, L., Nishida, H., Kaibuchi, K. and Hamamori, Y. (2006) Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 281, 15320-15329
67 Bettinger, B. T., Gilbert, D. M. and Amberg, D. C. (2004) Actin up in the nucleus. Nat Rev Mol Cell Biol 5, 410-415
68 Pederson, T. and Aebi, U. (2005) Nuclear actin extends, with no contraction in sight. Mol Biol Cell 16, 5055-5060
69 Fomproix, N. and Percipalle, P. (2004) An actin-myosin complex on actively transcribing genes. Exp Cell Res 294, 140-148
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33548-
dc.description.abstractRho-associated kinase (ROCK)調控的細胞膜皺縮在PMA誘發D2細胞凋亡過程中扮演了決定性的角色,該群細胞有細胞核結構改變、核染色質(chromatin)濃縮和RNA合成減少的現象。藉由冷光酵素活性系統(luciferase reporter system)分析第一、二和三型聚合脢所從屬的基因表現,我發現第一、二和三型聚合脢所從屬的基因表現皆會被ROCK(CAT)抑制,說明ROCK的過度活化足以抑制普遍性的基因轉錄。由於ROCK造成的細胞皺縮不會使核染色質過度包裹到無法被微球菌核酸脢(micrococcal nuclease)切割的狀態,顯示ROCK所造成轉錄的抑制不是導因於核染色質更高度秩序(higher-order)的濃縮。藉由分析組蛋白的修飾得知在HEK 293T細胞中ROCK(CAT)的表現會造成組蛋白H3的K9三甲基化增加及S10磷酸化減少,而不影響組蛋白H2B的S14磷酸化。我同時利用核染色質免疫沈澱法(ChIP)證實在表現ROCK(CAT)的HEK 293T以及處理PMA的D2細胞中,位於rRNA啟動子區域的組蛋白H3有K9三甲基化增加的現象。已知在核染色質重組所造成的轉錄抑制機轉中,組蛋白H3的K9甲基化扮演一關鍵性的角色,因此我認為透過活化ROCK所造成的細胞皺縮可能傳遞一個促進組蛋白H3 K9甲基化的訊息。有趣的是,利用siRNA降低組蛋白甲基轉移脢G9a的表現可以減緩ROCK(CAT)所造成的轉錄抑制以及組蛋白H3 K9三甲基化增加。因此我推論細胞質中ROCK所引發的皺縮訊息可傳遞到細胞核,透過G9a的作用促進核染色質重組導致基因轉錄的抑制。zh_TW
dc.description.abstractIn phorbol ester-induced pro-apoptotic D2 cells, the Rho-associated kinase (ROCK) plays a determining role in membrane contraction, which concomitantly results in nuclear shape change, chromatin condensation and transcription repression. Using various luciferase reporter systems, I found that pol I, II and III-dependent transcriptions are all suppressed by ectopic expression of dominant active form of ROCK(CAT), indicating that too much ROCK activation is sufficient to shut-off general transcription. Here, I showed that ROCK-mediated contraction does not make chromatin too packed to be accessed by micrococcal nuclease digestion, indicating that ROCK-mediated transcription repression is not a result of a higher-order chromatin condensation. By analyzing histone modifications, I found that expression of ROCK(CAT) in HEK 293T cells increased K9 tri-methylation of histone H3 with decreased extent of S10 phosphorylation of histone H3, while S14 phosphorylation of histone H2B remained unaffected. Consistently, results from ChIP assays showed that K9-methylation of H3 in the rRNA promoter region was increased in both HEK 293T expressing ROCK(CAT) and PMA-induced pro-apoptotic D2 cells. Since it is well known that K9 methylation of H3 plays a crucial role in chromatin remodeling for transcriptional repression, it is very likely that ROCK-mediated contraction is capable of conferring signals for K9 methylation of H3 in nuclei. Of interest, depleted expression of G9a, a histone methyltransferase, restored transcription capacity in cells expressing ROCK(CAT) with a concurrent reduction in extent of K9 methylation of histone H3. Accordingly, I hypothesized that ROCK-mediated contraction in cytoplasm transmits signal to nucleus, where function of G9a is upregulated to remodel chromatin for transcriptional repression.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:46:42Z (GMT). No. of bitstreams: 1
ntu-95-R93442007-1.pdf: 710009 bytes, checksum: 0286b197ebd9ab36d8d74764519401ea (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要………………………………………………………2
Abstract………………………………………………………...3
Introduction…………………………………………………….4
Materials and Methods………………………………………..14
Results…………………………………………………………25
Discussion……………………………………………………..33
Figures and Legends…………………………………………..37
References……………………………………………………..55
dc.language.isoen
dc.subject基因轉錄zh_TW
dc.subjecttranscriptionen
dc.subjectROCKen
dc.titleROCK 抑制普遍性基因轉錄之探討zh_TW
dc.titleROCK-dependent repression of general transcriptionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華(Ruey-Hwa Chen),施修明,羅?升
dc.subject.keyword基因轉錄,zh_TW
dc.subject.keywordROCK,transcription,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2006-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
693.37 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved