請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33546完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智芬 | |
| dc.contributor.author | Yi-Chang Chang | en |
| dc.contributor.author | 張益昌 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:46:35Z | - |
| dc.date.available | 2006-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-17 | |
| dc.identifier.citation | References
1 Reichard, P. (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57, 349-374 2 Chimploy, K. and Mathews, C. K. (2001) Mouse ribonucleotide reductase control: influence of substrate binding upon interactions with allosteric effectors. J Biol Chem 276, 7093-7100 3 Stubbe, J. (1990) Ribonucleotide reductases: amazing and confusing. J Biol Chem 265, 5329-5332 4 Eriksson, S., Thelander, L. and Akerman, M. (1979) Allosteric regulation of calf thymus ribonucleoside diphosphate reductase. Biochemistry 18, 2948-2952 5 Arner, E. S. and Eriksson, S. (1995) Mammalian deoxyribonucleoside kinases. Pharmacol Ther 67, 155-186 6 Spyrou, G. and Reichard, P. (1988) Dynamics of the thymidine triphosphate pool during the cell cycle of synchronized 3T3 mouse fibroblasts. Mutat Res 200, 37-43 7 Navalgund, L. G., Rossana, C., Muench, A. J. and Johnson, L. F. (1980) Cell cycle regulation of thymidylate synthetase gene expression in cultured mouse fibroblasts. J Biol Chem 255, 7386-7390 8 Rode, W., Scanlon, K. J., Moroson, B. A. and Bertino, J. R. (1980) Regulation of thymidylate synthetase in mouse leukemia cells (L1210). J Biol Chem 255, 1305-1311 9 Liu, J., Schmitz, J. C., Lin, X., Tai, N., Yan, W., Farrell, M., Bailly, M., Chen, T. and Chu, E. (2002) Thymidylate synthase as a translational regulator of cellular gene expression. Biochim Biophys Acta 1587, 174-182 10 Bradshaw, H. D., Jr. (1983) Molecular cloning and cell cycle-specific regulation of a functional human thymidine kinase gene. Proc Natl Acad Sci U S A 80, 5588-5591 11 Bello, L. J. (1974) Regulation of thymidine kinase synthesis in human cells. Exp Cell Res 89, 263-274 12 Sherley, J. L. and Kelly, T. J. (1988) Regulation of human thymidine kinase during the cell cycle. J Biol Chem 263, 8350-8358 13 Sherley, J. L. and Kelly, T. J. (1988) Human cytosolic thymidine kinase. Purification and physical characterization of the enzyme from HeLa cells. J Biol Chem 263, 375-382 14 Ke, P. Y. and Chang, Z. F. (2004) Mitotic degradation of human thymidine kinase 1 is dependent on the anaphase-promoting complex/cyclosome-CDH1-mediated pathway. Mol Cell Biol 24, 514-526 15 Lee, L. S. and Cheng, Y. (1977) Human thymidylate kinase. Purification, characterization, and kinetic behavior of the thymidylate kinase derived from chronic myelocytic leukemia. J Biol Chem 252, 5686-5691 16 Huang, S. H., Tang, A., Drisco, B., Zhang, S. Q., Seeger, R., Li, C. and Jong, A. (1994) Human dTMP kinase: gene expression and enzymatic activity coinciding with cell cycle progression and cell growth. DNA Cell Biol 13, 461-471 17 Coppock, D. L. and Pardee, A. B. (1987) Control of thymidine kinase mRNA during the cell cycle. Mol Cell Biol 7, 2925-2932 18 DeGregori, J., Kowalik, T. and Nevins, J. R. (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 15, 4215-4224 19 Liang, P., Averboukh, L., Zhu, W., Haley, T. and Pardee, A. B. (1995) Molecular characterization of the murine thymidylate kinase gene. Cell Growth Differ 6, 1333-1338 20 Chang, Z. F., Huang, D. Y. and Hsue, N. C. (1994) Differential phosphorylation of human thymidine kinase in proliferating and M phase-arrested human cells. J Biol Chem 269, 21249-21254 21 Li, C. L., Lu, C. Y., Ke, P. Y. and Chang, Z. F. (2004) Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site. Biochem Biophys Res Commun 313, 587-593 22 Ke, P. Y., Kuo, Y. Y., Hu, C. M. and Chang, Z. F. (2005) Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 19, 1920-1933 23 Zachariae, W., Shevchenko, A., Andrews, P. D., Ciosk, R., Galova, M., Stark, M. J., Mann, M. and Nasmyth, K. (1998) Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279, 1216-1219 24 Gmachl, M., Gieffers, C., Podtelejnikov, A. V., Mann, M. and Peters, J. M. (2000) The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc Natl Acad Sci U S A 97, 8973-8978 25 Yoon, H. J., Feoktistova, A., Wolfe, B. A., Jennings, J. L., Link, A. J. and Gould, K. L. (2002) Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr Biol 12, 2048-2054 26 Fang, G., Yu, H. and Kirschner, M. W. (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12, 1871-1883 27 Fang, G., Yu, H. and Kirschner, M. W. (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell 2, 163-171 28 Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. and Gorbsky, G. J. (1998) Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol 141, 1393-1406 29 Zachariae, W., Schwab, M., Nasmyth, K. and Seufert, W. (1998) Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721-1724 30 Cooper, K. F., Mallory, M. J., Egeland, D. B., Jarnik, M. and Strich, R. (2000) Ama1p is a meiosis-specific regulator of the anaphase promoting complex/cyclosome in yeast. Proc Natl Acad Sci U S A 97, 14548-14553 31 Harper, J. W., Burton, J. L. and Solomon, M. J. (2002) The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16, 2179-2206 32 Pfleger, C. M. and Kirschner, M. W. (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14, 655-665 33 Pfleger, C. M., Lee, E. and Kirschner, M. W. (2001) Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev 15, 2396-2407 34 Reimann, J. D., Freed, E., Hsu, J. Y., Kramer, E. R., Peters, J. M. and Jackson, P. K. (2001) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645-655 35 Schwab, M., Neutzner, M., Mocker, D. and Seufert, W. (2001) Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. Embo J 20, 5165-5175 36 Bembenek, J. and Yu, H. (2001) Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a. J Biol Chem 276, 48237-48242 37 Kotani, S., Tugendreich, S., Fujii, M., Jorgensen, P. M., Watanabe, N., Hoog, C., Hieter, P. and Todokoro, K. (1998) PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell 1, 371-380 38 Rudner, A. D. and Murray, A. W. (2000) Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol 149, 1377-1390 39 Golan, A., Yudkovsky, Y. and Hershko, A. (2002) The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J Biol Chem 277, 15552-15557 40 Kraft, C., Herzog, F., Gieffers, C., Mechtler, K., Hagting, A., Pines, J. and Peters, J. M. (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. Embo J 22, 6598-6609 41 Bradley, M. O. and Sharkey, N. A. (1978) Mutagenicity of thymidine to cultured Chinese hamster cells. Nature 274, 607-608 42 Skoog, L. and Bjursell, G. (1974) Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in Chinese hamster ovary cells. J Biol Chem 249, 6434-6438 43 Hahn, W. C. and Weinberg, R. A. (2002) Rules for making human tumor cells. N Engl J Med 347, 1593-1603 44 Rahman, L., Voeller, D., Rahman, M., Lipkowitz, S., Allegra, C., Barrett, J. C., Kaye, F. J. and Zajac-Kaye, M. (2004) Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell 5, 341-351 45 Sutterluety, H. and Seiser, C. (1997) Thymidine inhibits the growth-arrest-specific degradation of thymidine kinase protein in transfected L fibroblasts. J Mol Biol 265, 153-160 46 Posch, M., Hauser, C. and Seiser, C. (2000) Substrate binding is a prerequisite for stabilisation of mouse thymidine kinase in proliferating fibroblasts. J Mol Biol 300, 493-502 47 Bolderson, E., Scorah, J., Helleday, T., Smythe, C. and Meuth, M. (2004) ATM is required for the cellular response to thymidine induced replication fork stress. Hum Mol Genet 13, 2937-2945 48 Rodriguez, R. and Meuth, M. (2006) Chk1 and p21 cooperate to prevent apoptosis during DNA replication fork stress. Mol Biol Cell 17, 402-412 49 Shiloh, Y. (2001) ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11, 71-77 50 Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177-2196 51 Rotman, G. and Shiloh, Y. (1999) ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135-6144 52 Ko, L. J. and Prives, C. (1996) p53: puzzle and paradigm. Genes Dev 10, 1054-1072 53 Giaccia, A. J. and Kastan, M. B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12, 2973-2983 54 North, S. and Hainaut, P. (2000) p53 and cell-cycle control: a finger in every pie. Pathol Biol (Paris) 48, 255-270 55 Yu, J., Zhang, L., Hwang, P. M., Rago, C., Kinzler, K. W. and Vogelstein, B. (1999) Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A 96, 14517-14522 56 Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E. and Kastan, M. B. (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11, 3471-3481 57 Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y. and Ziv, Y. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674-1677 58 Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B. and Siliciano, J. D. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677-1679 59 Hall-Jackson, C. A., Cross, D. A., Morrice, N. and Smythe, C. (1999) ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18, 6707-6713 60 Lakin, N. D., Hann, B. C. and Jackson, S. P. (1999) The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18, 3989-3995 61 Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C. and Abraham, R. T. (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13, 152-157 62 Dumaz, N. and Meek, D. W. (1999) Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J 18, 7002-7010 63 Ahn, J. Y., Schwarz, J. K., Piwnica-Worms, H. and Canman, C. E. (2000) Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60, 5934-5936 64 Melchionna, R., Chen, X. B., Blasina, A. and McGowan, C. H. (2000) Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol 2, 762-765 65 Chehab, N. H., Malikzay, A., Appel, M. and Halazonetis, T. D. (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14, 278-288 66 Hirao, A., Kong, Y. Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S. J. and Mak, T. W. (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824-1827 67 Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. and Prives, C. (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14, 289-300 68 Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847 69 Donaldson, A. D. and Blow, J. J. (1999) The regulation of replication origin activation. Curr Opin Genet Dev 9, 62-68 70 Takisawa, H., Mimura, S. and Kubota, Y. (2000) Eukaryotic DNA replication: from pre-replication complex to initiation complex. Curr Opin Cell Biol 12, 690-696 71 Johnson, R. D. and Jasin, M. (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. Embo J 19, 3398-3407 72 Gatei, M., Young, D., Cerosaletti, K. M., Desai-Mehta, A., Spring, K., Kozlov, S., Lavin, M. F., Gatti, R. A., Concannon, P. and Khanna, K. (2000) ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25, 115-119 73 Lim, D. S., Kim, S. T., Xu, B., Maser, R. S., Lin, J., Petrini, J. H. and Kastan, M. B. (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613-617 74 Schultz, L. B., Chehab, N. H., Malikzay, A. and Halazonetis, T. D. (2000) p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 151, 1381-1390 75 Rappold, I., Iwabuchi, K., Date, T. and Chen, J. (2001) Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 153, 613-620 76 Beamish, H. and Lavin, M. F. (1994) Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int J Radiat Biol 65, 175-184 77 Scott, D., Spreadborough, A. R. and Roberts, S. A. (1994) Radiation-induced G2 delay and spontaneous chromosome aberrations in ataxia-telangiectasia homozygotes and heterozygotes. Int J Radiat Biol 66, S157-163 78 Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S. and Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501-1505 79 Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H. and Elledge, S. J. (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497-1501 80 O'Connell, M. J., Walworth, N. C. and Carr, A. M. (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10, 296-303 81 Cory, A. H., Owen, T. C., Barltrop, J. A. and Cory, J. G. (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3, 207-212 82 Berridge, M. V. and Tan, A. S. (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303, 474-482 83 Sherman, P. A. and Fyfe, J. A. (1989) Enzymatic assay for deoxyribonucleoside triphosphates using synthetic oligonucleotides as template primers. Anal Biochem 180, 222-226 84 Howell, S. B., Mansfield, S. J. and Taetle, R. (1981) Significance of variation in serum thymidine concentration for the marrow toxicity of methotrexate. Cancer Chemother Pharmacol 5, 221-226 85 Ellims, P. H. and Van der Weyden, M. B. (1980) Human liver thymidine kinase. Purification and some properties of the enzyme. J Biol Chem 255, 11290-11295 86 Tamiya, N., Yusa, T., Yamaguchi, Y., Tsukifuji, R., Kuroiwa, N., Moriyama, Y. and Fujimura, S. (1989) Co-purification of thymidylate kinase and cytosolic thymidine kinase from human term placenta by affinity chromatography. Biochim Biophys Acta 995, 28-35 87 Kauffman, M. G. and Kelly, T. J. (1991) Cell cycle regulation of thymidine kinase: residues near the carboxyl terminus are essential for the specific degradation of the enzyme at mitosis. Mol Cell Biol 11, 2538-2546 88 Sutterluety, H., Bartl, S., Karlseder, J., Wintersberger, E. and Seiser, C. (1996) Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells. J Mol Biol 259, 383-392 89 Folkers, G., Trumpp-Kallmeyer, S., Gutbrod, O., Krickl, S., Fetzer, J. and Keil, G. M. (1991) Computer-aided active-site-directed modeling of the herpes simplex virus 1 and human thymidine kinase. J Comput Aided Mol Des 5, 385-404 90 Welin, M., Kosinska, U., Mikkelsen, N. E., Carnrot, C., Zhu, C., Wang, L., Eriksson, S., Munch-Petersen, B. and Eklund, H. (2004) Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc Natl Acad Sci U S A 101, 17970-17975 91 Cass, C. E., Dahlig, E., Lau, E. Y., Lynch, T. P. and Paterson, A. R. (1979) Fluctuations in nucleoside uptake and binding of the inhibitor of nucleoside transport, nitrobenzylthioinosine, during the replication cycle of HeLa cells. Cancer Res 39, 1245-1252 92 Plagemenn, P. G., Richey, D. P., Zylka, J. M. and Erbe, J. (1975) Cell cycle and growth stage-dependent changes in the transport of nucleosides, hypoxanthine, choline, and deoxyglucose in cultured Novikoff rat hepatoma cells. J Cell Biol 64, 29-41 93 Munch-Petersen, B. (1984) Differences in the kinetic properties of thymidine kinase isoenzymes in unstimulated and phytohemagglutinin-stimulated human lymphocytes. Mol Cell Biochem 64, 173-185 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33546 | - |
| dc.description.abstract | 細胞產生胸苷三磷酸 (dTTP) 的過程被嚴密的調控著,在細胞週期進行時此過程也協同DNA 的複製。 我們過去的研究指出,在 DNA複製完成後,細胞分裂後期促進複合體 (anaphase promoting complex/cyclosome, APC/C) 對人類胸腺嘧啶激酶 (human thymidine kinase 1, hTK1) 及人類胸苷酸激酶 (human thymidylate kinase, hTMPK) 的蛋白降解途徑在調控 dTTP pool 上扮演重要的角色。 在本研究中,我證明了在生長停滯的細胞中,胸腺嘧啶 (thymidine) 與人類胸腺嘧啶激酶 (hTK1) 的結合可防止人類胸腺嘧啶激酶 (hTK1) 被 APC/C-Cdh1 所從屬的降解機制所降解。 穩定表現原生型人類胸腺嘧啶激酶 (wild type hTK1) 及原生型人類胸苷酸激酶 (wild type hTMPK) 的 NIH3T3 纖維組織母細胞 (fibroblasts) 在細胞生長方面對於胸腺嘧啶 (thymidine) 的處理相當敏感。 藉由流式細胞分析技術,我發現在血清刺激 (serum stimulation) 的條件下,有胸腺嘧啶 (thymidine) 處理過的細胞具有 S phase 進行緩慢的現象。 雖然在剝奪血清 (serum deprivation) 時人類胸腺嘧啶激酶 (hTK1) 可以被胸腺嘧啶 (thymidine) 所穩定,但這樣的情況並不會導致 dTTP pool 在同時表現人類胸腺嘧啶激酶 (hTK1) 及人類胸苷酸激酶 (hTMPK) 的細胞中顯著上升。 事實上,在剝奪血清 (serum deprivaiton) 的過程中即使人類胸腺嘧啶激酶 (hTK1) 沒有被穩定,在血清刺激 ( serum stimulation) 下處理胸腺嘧啶 (thymidine) 這些細胞仍顯示 G1/S phase 停溜的現象,而在此停溜的過程中我都沒有觀察到 dNTP 不平衡及去氧胞苷三磷酸 (dCTP) 缺乏的現象。 在此期間,胸腺嘧啶所誘發的 G1/S phase 停溜伴隨著檢查點 (checkpoint) 的活化,而此過程中不需要 Chk2 的活性。 另一方面,提供去氧胞苷 (deoxycytidine) 可以挽回胸腺嘧啶 (thymidine) 誘發的 G1/S phase 停溜現象,這樣的結果指出複製過程的檢查點 (checkpoint) 並非直接因為缺乏去氧胞苷三磷酸 (dCTP) 而活化,而是藉由一個機制去檢測 dNTP 的不平衡最後導致檢查點 (checkpoint) 的活化。 | zh_TW |
| dc.description.abstract | Cellular production of dTTP is a highly regulated process that is coordinated with DNA replication in the cell cycle. Our previous study has shown that the down-regulation of human TK1 (hTK1) and human TMPK (hTMPK) proteins by APC/C (anaphase promoting complex/cyclosome)-mediated proteolysis pathway plays an important role in the regulation of dTTP pool after completion of DNA replication in the cell cycle. In this study, I showed that thymidine binding prevents hTK1 from APC/C-Cdh1-mediated degradation, rendering its stabilization during growth arrest. Cell proliferation of NIH3T3 fibroblasts stably expressing hTK1 and hTMPK were sensitive to thymidine treatment. By FACS analysis, I found that these cells treated with thymidine had slow S phase progression in response to serum stimulation. Although hTK1 is stabilized during serum deprivation by thymidine, this condition did not induce a drastic increase of dTTP level in wt/wt cells. In fact, without hTK1 stabilization during serum deprivation, these cells still displayed the G1/S phase arrest after serum stimulation in the presence of thymidine, where neither a severe dNTP imbalance nor was the dCTP depletion detected. In the meanwhile, thymidine-induced G1/S phase arrest was accompanied by increased extent of checkpoint activation without the requirement for Chk2 activity. Since the supply of deoxycytidine could still rescue the thymidine-induced G1/S arrest, the results indicated that the onset of replication checkpoint activation may occur due to a mechanism sensing dNTP imbalance rather than a direct consequence of dCTP depletion during DNA replication. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:46:35Z (GMT). No. of bitstreams: 1 ntu-95-R93442015-1.pdf: 1402925 bytes, checksum: 66574c1d384708563fc1fc66c0bd24c0 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
中文摘要…………………………………………………………. 1 Abstract………………………………………………………….. 2 Introduction……………………………………………………... 3 Materials and Methods…………………………………………. 10 Results…………………………………………………………… 16 Discussion……………………………………………………….. 23 Figures and Legends……………………………………………. 26 Appendix………………………………………………………... 44 References………………………………………………………. 45 | |
| dc.language.iso | en | |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 胸腺嘧啶 | zh_TW |
| dc.subject | 胸腺嘧啶激酶 | zh_TW |
| dc.subject | TK | en |
| dc.subject | thymidine | en |
| dc.subject | cell cycle | en |
| dc.title | 胸腺嘧啶對人類胸腺嘧啶激酶穩定性及細胞週期影響之探討 | zh_TW |
| dc.title | Effects of thymidine on hTK1 stabilization and cell cycle progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張明富,陳美如,李芳仁 | |
| dc.subject.keyword | 胸腺嘧啶激酶,細胞週期,胸腺嘧啶, | zh_TW |
| dc.subject.keyword | TK,thymidine,cell cycle, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
