請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33517完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章(Fi-John Chang) | |
| dc.contributor.author | Yi-Hung Chen | en |
| dc.contributor.author | 陳逸鴻 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:44:56Z | - |
| dc.date.available | 2012-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | 1. Atiya, A.F., S.M. El-Shoura, S.I. Shaheen, and M.S. El-Sherif. 1999. A comparison between neural-network forecasting techniques - Case study: River flow forecasting. Ieee Transactions on Neural Networks. 10:402-409.
2. Chang, F.J., and Y.T. Chang. 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources. 29:1-10. 3. Chang, F.J., and Y.C. Chen. 2001. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol. 245:153-164. 4. Chang, F.J., and Y.C. Chen. 2003. Estuary water-stage forecasting by using radial basis function neural network. J. Hydrol. 270:158-166. 5. Chang, Y.T., L.C. Chang, and F.J. Chang. 2005. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes. 19:1431-1444. 6. Cigizoglu, H.K. 2004. Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Advances in Water Resources. 27:185-195. 7. Cigizoglu, H.K., and O. Kisi. 2006. Methods to improve the neural network performance in suspended sediment estimation. J. Hydrol. 317:221-238. 8. Cobaner, M., B. Unal, and O. Kisi. 2009. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol. 367:52-61. 9. Coulibaly, P., F. Anctil, and B. Bobee. 2001. Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering. 6:367-376. 10. Ferguson, R.I. 1986. River lodas underestimated by rating curves. Water Resources Research. 22:74-76. 11. Hong, Y., Y.M. Chiang, Y. Liu, K.L. Hsu, and S. Sorooshian. 2006. Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. International Journal of Remote Sensing. 27:5165-5184. 12. Hsu, K.L., H.V. Gupta, and S. Sorooshian. 1995. Artificial neural-network modeling of the rainfall-runoff process. Water Resources Research. 31:2517-2530. 13. Jain, S.K. 2001. Development of Integrated Sediment Rating Curves Using ANNs. Journal of Hydraulic Engineering. 127:30-37. 14. Jang, J.S.R. 1993. ANFIS - Adaptive network-based fuzzy inference system. Ieee Transactions on Systems Man and Cybernetics. 23:665-685. 15. Jansson, M. 1985. A comparison of detransformed logarithmic regressions and power function regressions. Geografiska Annaler Series a-Physical Geography. 67:61-70. 16. Kendall, M.G. 1938. A new measure of rank correlation. Biometrika. 30:81-93. 17. Kisi, O. 2004a. Daily suspended sediment modelling using a fuzzy differential evolution approach. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. 49:183-197. 18. Kisi, O. 2004b. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. 49:1025-1040. 19. Kisi, O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. 50:683-696. 20. Kisi, O., M.E. Karahan, and Z. Sen. 2006. River suspended sediment modelling using a fuzzy logic approach. Hydrological Processes. 20:4351-4362. 21. Luk, K.C., J.E. Ball, and A. Sharma. 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227:56-65. 22. McBean, E.A., and S. Al-Nassri. 1988. Uncertainty in Suspended Sediment Transport Curves. Journal of Hydraulic Engineering. 114:63-74. 23. Mirbagheri, S.A., K.K. Tanji, and R.B. Krone. 1988. Sediment characterization and transport in Colusa basin drain. Journal of Environmental Engineering-Asce. 114:1257-1273. 24. Morgan, R.P.C. 1995. Soil erosion and conservation. Longman, Londan. 25. Peters-Kümmerly, B.E. 1973. Untersuchungen über Zusammensetzung und Transport von Schwebstoffen in einigen Schweizer Flüssen. Geographica Helvetica 137-151. 26. Sajikumar, N., and B.S. Thandaveswara. 1999. A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 216:32-55. 27. Shamseldin, A.Y. 1997. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199:272-294. 28. Tayfur, G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques. 47:879-892. 29. Tayfur, G., and V. Guldal. 2006. Artificial neural networks for estimating daily total suspended sediment in natural streams. Nordic Hydrology. 37:69-79. 30. Tayfur, G., S. Ozdemir, and V.P. Singh. 2003. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advances in Water Resources. 26:1249-1256. 31. Toth, E., A. Brath, and A. Montanari. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 239:132-147. 32. Van Rompaey, A.J.J., G. Verstraeten, K. Van Oost, G. Govers, and J. Poesen. 2001. Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms. 26:1221-1236. 33. Walling, D.E. 1977. Assessing accuracy of suspended sediment rating curves for a small basin. Water Resources Research. 13:530-538. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33517 | - |
| dc.description.abstract | 河川高濃度的泥砂於颱風期間造成水庫淤積現象一直為集水區經營管理與水庫操作過程中重要之議題,因集水區泥砂之量測無法持續且穩定進行觀測,而傳統之回歸分析與泥砂率定曲線方法並無法提供有效而準確之模擬,故建立一精確之集水區泥砂濃度推估模式乃有迫切之必要性。本研究就此議題分為兩部份進行研究,首先,乃以調適性網路模糊推論系統建立石門水庫集水區霞雲水文站泥砂推估模式,並蒐集1982至2009年霞雲水文站流量、泥砂濃度以及上游16個雨量測站之日雨量觀測資料以分析及探討不同輸入變數對泥砂濃度之影響。結果顯示最佳之輸入變數組合為同時刻流量與前兩日累積雨量,而成果亦顯示調適性模糊推論系於泥砂濃度推估能力則較傳統方法準確。
第二部份之研究則著眼於調適性網路模糊推論系統建構石門水庫集水區羅浮水文站颱風期間之泥砂濃度預測模式。模式建構所需之資料採用石門水庫集水區之平均雨量、羅浮水文站入流量以及泥砂濃度,亦測試不同輸入變數組合並逐步找出最佳模式。結果顯示最佳之變數組合為前一小時入流量、前一小時與前兩小時泥砂濃度以及前七小時平均雨量。此結果可做為颱風期間水庫操作及水資源管理之參考,藉由精確之泥砂濃度預測可預先排放含有高濃度的流量,以減緩水庫之淤積速率並延長水庫的使用壽命。 | zh_TW |
| dc.description.abstract | High concentration of sediment in upstream river is one of the important issues that affect the effectiveness of water resources management and reservoir operations in watersheds during typhoon periods. The measurement of sediment in the river is difficult to continuously and effectively achieve because of time- and human- consuming. Furthermore, traditional methods such as regression analysis and sediment rating curve are not able to provide effective simulation of sediments. As a result, there is a necessity of establishing a precise model for suspended sediment estimation and prediction. The study can be divided into two topics, in which the first topic tries to construct the estimation of sediment concentration at Hsia-Yun gauging station by applying the Adaptive Network-Based Fuzzy Inference System (ANFIS). To analyze the relationship between hydrological variables and suspended sediment concentration, the daily streamflow, precipitation, and sediment concentration data recorded in the years of 1982-2009 were collected. The results not only showed that the best input combination of a model was consisted of current streamflow and the accumulated rainfall but also revealed that the performance obtained from ANFIS outperformed conventional methods in terms of model accuracy, when predicting daily suspended sediment concentrations.
The second topic focuses on the prediction of event-based suspended sediment concentration at Lo-Fu gauging station during typhoon periods using the hourly average rainfall, inflow rate, and suspended sediment concentration. By taking various input variables into account, the study successfully constructed a suspended sediment concentration prediction model by using ANFIS with the input dimensions consisting of antecedent one-hour inflow rate, antecedent one- and two-hour suspended sediment concentration, and antecedent seven-hour rainfall information. Overall, the study demonstrates that the performance obtained from ANFIS can be used as a reference to the management of reservoir operation and water discharge because typhoons always result in a high concentration of suspended sediment in both river and reservoir. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:44:56Z (GMT). No. of bitstreams: 1 ntu-100-R98622034-1.pdf: 1153876 bytes, checksum: 112f187d28d9cd913edede7e61a7d98e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Abstract…….. i
中文摘要 iii Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Structure of the Thesis 2 Chapter 2 Literature Review 5 2.1 Sediment Rating Curves 5 2.2 Artificial Neural Network 7 Chapter 3 Methodologies 9 3.1 Correlation Analysis 9 3.1.1 Pearson's Product-Moment Coefficient 9 3.1.2 Kendall’s Tau Rank Correlation Coefficient 10 3.2 Moving Average 11 3.3 Sediment Rating Curve 12 3.4 Adapted Network-Based Inference System (ANFIS) 13 3.4.1 Fuzzy If-Then Rules Fuzzy Inference Systems 13 3.4.2 Fuzzy Inference Systems 14 3.4.3 Architecture of ANFIS 15 Chapter 4 Estimation of Daily Suspended Sediment Concentration 21 4.1 Study Area 22 4.1.1 Rainfall Characteristics 22 4.2 Data Collection 24 4.2.1 Data Pre-processing and Analysis 24 4.2.2 Usability of Data 27 4.2.3 Correlation Analysis 29 4.3 Model Construction 31 4.4 Model Performance Criteria 33 4.5 Results and Discussion 34 4.5.1 Model 1: Streamflow Model 35 4.5.2 Model 2: Rainfall Model 38 4.5.3 Model 3: Streamflow + Rainfall Model 41 4-6 Summary 45 Chapter 5 Prediction of Suspended Sediment Concentration during Typhoon Events 47 5.1 Study Area 48 5.2 Data Collection 49 5.3 Data Pre-Processing 51 5.4 Correlation Analysis 56 5.5 Model Construction 62 5.6 Model Performance Criteria 63 5.7 Results and Discussion 65 5.7.1 Inflow Model (Model 1) 65 5.7.2 Inflow + Sediment Model (Model 2) 66 5.7.3 Inflow + Sediment + Rainfall Model (Model 3) 68 5.8 Summary 73 Chapter 6 Conclusions and Recommendations 77 6.1 Conclusions 77 6.2 Recommendations 79 References 81 | |
| dc.language.iso | en | |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 調適性網路模糊推論系統 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 泥砂濃度 | zh_TW |
| dc.subject | 推估 | zh_TW |
| dc.subject | 預測 | zh_TW |
| dc.subject | Estimation | en |
| dc.subject | Typhoons | en |
| dc.subject | Prediction | en |
| dc.subject | Adapted Network-Based Fuzzy Inference System | en |
| dc.subject | Artificial Neural Network | en |
| dc.subject | Suspended Sediment Concentration | en |
| dc.title | 以類神經網路建構石門水庫集水區泥砂濃度推估模式 | zh_TW |
| dc.title | Constructing the suspended sediment concentration model in Shihmen Reservoir watershed by artificial neural networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張麗秋(Li-Chiu Chang),黃文政(Wen-Cheng Huang),賴進松(Jihn-Sung Lai),陳弘?(Hung-Kwai Chen) | |
| dc.subject.keyword | 調適性網路模糊推論系統,類神經網路,泥砂濃度,推估,預測,颱風, | zh_TW |
| dc.subject.keyword | Adapted Network-Based Fuzzy Inference System,Artificial Neural Network,Suspended Sediment Concentration,Estimation,Prediction,Typhoons, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
