請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33496完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | |
| dc.contributor.author | Chun-Ta Huang | en |
| dc.contributor.author | 黃俊達 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:43:46Z | - |
| dc.date.available | 2015-07-17 | |
| dc.date.copyright | 2006-07-20 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-17 | |
| dc.identifier.citation | [1] H. Yang, “A Road to Future Broadband Wireless Access: MIMO-OFDM-Based Air Interface,” IEEE Communications. Mag., vol. 43, no. 1, pp. 53-60, January 2005
[2] J. A. C. Bingham, “Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come,” IEEE communications Mag., vol. 28, no. 5, pp. 5-14, May 1990. [3] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum Receiver Design for Wireless Broad-band Systems Using OFDM--Part I,” IEEE Trans. Communications, vol. 47, no. 11, pp. 1668-1677, November 1999. [4] L. Piazzo, P. Mandarini, “Analysis of Phase Noise Effects in OFDM Modems,” IEEE Trans. Communications, vol.50, no. 10, pp. 1696-1705, October 2002. [5] F. Munier, T. Eriksson, and A. Svensson, ”Receiver Algorithms for OFDM Systems in Phase Noise and AWGN,” IEEE International Symp. PIMRC, vol. 3, pp. 5-8, September 2004. [6] M. J. E. Golay, “Complementary Series,” IEEE Trans. Information Theory, vol. 7, no. 2, pp. 82-87, April 1961. [7] R. Prasad, OFDM for Wireless Communications Systems, 1st Edition, Artech House, Inc. [8] S. Haykin, Communication Systems, 4th Edition, John Wiley & Sons, Inc. [9] H. Lee, B. Han, Y. Shin, and S. Im, “Multipath Characteristics of Impulse Radio Channels,” in Proc. Vehicular Technology Conf., Tokyo, Japan, pp. 2487-2491, Spring 2000. [10] S. Dasgupta, and A. Pandharipande, “Complete Characterization of Channel-resistant DMT With Cyclic Prefix,” IEEE Signal Processing Lett., vol. 10, no. 6, pp. 161-163, June. 2003. [11] Y. H. Huang, “Design and Implementation of A Communication Digital Signal Processor for OFDM-based Software Radio,” Doctor Thesis, Dept. of Electrical Engineering , National Taiwan University, Taipei, Taiwan, May. 2001. [12] S. H. Han, and J. H. Lee, “An overview of Peak-to-Average Power Ratio reduction Techniques For Multicarrier Transmission,” IEEE Wireless Communications, vol. 12, no. 2, pp. 56-65, April 2005. [13] S. L. Miller, and R. J. O’Dea, “Peak Power and Bandwidth Efficient Linear Modulation,” IEEE Trans. Communications, vol. 46, pp. 1639-1648, Dec. 1998. [14] B. S. Krongold and D. L. Jones, “An Active-set Approach for OFDM PAR Reduction via Tone Reservation,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 495-509, February 2004. [15] R. W. Bäuml, R. F. H. Fisher, and J. B. Huber, “Reducing the Peak-to-Average Power Ratio of Multicarrier Modulation by Selected Mapping,” Elect. Lett., vol. 32, no. 22, pp. 2056–57, Oct. 1996. [16] T. Pollet, M. V. Bladel, and M. Moeneclaey, “BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise,” IEEE. Trans. Communications, vol. 43, no. 2, pp.191-193, April 1995. [17] G. D. Vendelin, A. M. Pavio, and Ul. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, 1st Edition, John Wiley &Sons, Inc. [18] S. A. Maas, Nonlinear Microwave and RF circuits, 2nd Edition, Artech House, Inc. [19] A. G. Armada, “Understanding The Effects of Phase Noise in Orthogonal Frequency Division Multiplexing (OFDM),” IEEE Trans. Broadcasting, vol. 47, no. 2, pp.153-159, June 2001 [20] P. Robertson, and S. Kaiser, “Analysis of The Effects of Phase-Noise in Orthogonal Frequency Division Multiplexing (OFDM) Systems,” IEEE Conf. Communications, vol. 3, pp. 1652-1657, June 1995. [21] Y. Zhao and S. -G. Haggman, “Sensitivity to Doppler shift and Carrier Frequency Errors in OFDM Systems—The Consequences and Solutions,” IEEE Proc. Vehicular Technology Conf. Pp. 1564-1568, May 1996. [22] Y. Zhao and S. -G. Haggman, “Intercarrier Interference Self-Cancellation Scheme for OFDM Mobile Communication Systems,” IEEE Trans. Communications, vol. 49, no. 7, pp.1185-1191, July 2001. [23] J. Zhang, H. Rohling, and P. Zhang, “Analysis of ICI Cancellation Scheme in OFDM Systems With Phase Noise”, IEEE Trans. Broadcasting, vol. 50, no. 2, pp.97-105, June 2004. [24] U. Tureli, D. Kivanc, and H. Liu, “Experimental and Analytical Studies on a High-resolution OFDM Carrier Frequency Offset Estimator,” IEEE Trans. Veh. Technol., vol. 50, no. 2, pp.629-643, March 2001. [25] M. J. Fernandez-Getino Garcia, O. Edfors, and J. M. Paez-Borrallo, “Frequency Offset Correction for Coherent OFDM in Wireless Systems,” IEEE Trans. Consum. Electron., vol. 47, no. 1, pp.187-193, February 2001. [26] M. Gudmundson and P.-O. Anderson, “Adjacent Channel Interference in an OFDM System,” in IEEE 46th Veh. Techno. Conf., pp.918-922, April 1996. [27] C. Muschallik, “Improving an OFDM Reception Using an Adaptive Nyquist Windowing,” IEEE Trans. Consum. Electron., vol. 42, no. 3, pp.259-269, August 1996. [28] H. -G. Ryu, Y. Li, and J. -S. Park,“An Improved ICI Reduction Method in OFDM Communication System,” IEEE Trans. Broadcasting, vol. 51, no. 3, pp.395-400, September 2005. [29] A. Seyedi and G. J. Saulnier,“General ICI self-cancellation Scheme for OFDM Systems,” IEEE Trans. Veh. Techno., vol. 54, no. 1, pp.198-210, January 2005. [30] IEEE802.11a, IEEE Standard for Wireless LAN Medium Access Control Physical Layer Specifications. 1 edition, 1999. [31] ETSI EN 300 401 v1.3.2, Radio broadcasting systems; digital audio broadcasting system (DAB) to mobile, portable and fixed receivers. European Telecommunications Standards Institute (ETSI), France, 1 edition, 1999. [32] ETSI EN 300 744 v1.2.1, Digital video broadcasting (DVB): frame structure, channel coding and modulation for digital terrestrial television. European Telecommunications Standards Institute (ETSI), France, 1 edition, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33496 | - |
| dc.description.abstract | 為了減低正交分頻多工系統對頻率擾動的敏感度,我們使用子載波干擾相消法來達成這個目的。首先,我們分析了載波頻率漂移和相位雜訊對正交分頻多工系統的影響。在分析中可以發現這兩個非理想的效應都會造成子載波間干擾而影響系統整體效能。針對這個問題,我們分析並模擬了三種子載波間干擾相消法在存在載波頻率漂移或相位雜訊環境下的載波對雜訊比。這三種方法包括了:資料轉換法、資料共軛法和改良式資料共軛法。分析和模擬的結果可以發現,改良式資料共軛法除了改善了資料轉換法較高的峰值對平均功率比問題,同時也改進了資料共軛法的載波對雜訊比低落問題。另外,為了進一步改善子載波間干擾相消法頻譜效率較低的問題,我們提出了多重碼率子載波間干擾相消法。在分析和模擬中可以發現,當環境具有載波頻率漂移或相位雜訊下,只要能多提供一些傳輸能量,多重碼率子載波間干擾相消法便可有效地達到較高的頻譜效率。 | zh_TW |
| dc.description.abstract | In this thesis, the carrier frequency offset and phase noise effects in OFDM systems are analyzed. These non-ideal effects induce inter-carrier interference (ICI) which may deteriorate system’s performance. The ICI self-cancellation schemes, including data-conversion, data-conjugate, and our modified data-conjugate methods are analyzed and simulated. The theoretical derivation and simulation results show that our modified data-conjugate method shares the lower PAPR that data-conjugate method has and yet has CIR improvements. Moreover, to increase the bandwidth efficiency of normal ICI self-cancellation schemes, a multi-rate ICI self-cancellation scheme is also proposed. The simulations are done in both phase noise and carrier frequency offset environments. Results show that with some extra power, the multi-rate ICI self-cancellation scheme can be effectively used in OFDM systems to combat phase noise problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:43:46Z (GMT). No. of bitstreams: 1 ntu-95-R93942018-1.pdf: 982814 bytes, checksum: a9c74f2c417d5402d15a45ad42a4eee4 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Orthogonal Frequency Division Multiplexing Systems. . . . . 4 2.1 OFDM Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Mathematical Model of OFDM System . . . . . . . . . . . . . . . . . 5 2.1.2 Single-carrier vs. Multi-carrier Modulation . . . . . . . . . . . . . . .8 2.2 Guard Time and Cyclic Extension . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.3 Degradation due to Non-perfect Effects . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Sampling Clock Offset Problem . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Peak-to-Average Power Ratio Problem . . . . . . . . . . . . . . . . 14 2.4 OFDM Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chapter 3 Phase Noise and Carrier Frequency Offset Effects in OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 3.1 Phase Noise Effects in OFDM System . . . . . . . . . . . . . . . . . . . . . .20 3.2 Power Spectrum Density of Phase Noise . . . . . . . . . . . . . . . . . . . . 25 3.3 Carrier Frequency Offset effects in OFDM System . . . . . . . . . . . . . 27 Chapter 4 ICI Self-cancellation Scheme . . . . . . . . . . . . . . . . . . . . . . . .32 4.1 ICI Self-cancellation Scheme versus Frequency Offset . . . . . . . . . . .33 4.1.1 CIR versus Frequency Offset . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 ICI Self-cancellation Scheme versus Phase Noise . . . . . . . . . . . . . . 41 4.3 Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.1 CIR Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 4.3.2 BER Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Multi-rate ICI Self-cancellation versus Phase Noise . . . . . . . . 51 4.3.4 Multi-rate ICI Self-cancellation versus Frequency Offset . . . . .57 Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 | |
| dc.language.iso | en | |
| dc.subject | 相位雜訊 | zh_TW |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | 頻率漂移 | zh_TW |
| dc.subject | frequency offset | en |
| dc.subject | ICI self-cancellation | en |
| dc.subject | phase noise | en |
| dc.subject | OFDM | en |
| dc.title | 以子載波干擾相消法降低正交分頻多工系統受頻率擾動影響之研究 | zh_TW |
| dc.title | A Study on OFDM Systems Using ICI Self-cancellation Scheme to Mitigate the Frequency Perturbation Influences | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李學智,黃家齊 | |
| dc.subject.keyword | 正交分頻多工,頻率漂移,相位雜訊, | zh_TW |
| dc.subject.keyword | OFDM,frequency offset,phase noise,ICI self-cancellation, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 959.78 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
