Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33479
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群
dc.contributor.authorShu-Chun Wuen
dc.contributor.author吳淑君zh_TW
dc.date.accessioned2021-06-13T04:42:50Z-
dc.date.available2006-07-25
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citationBloss T.a., Witze E.S., Rothman J.H. (2003) Suppression of CED-3-independent apoptosis by mitochondrial betaNAC in Caenorhabditis elegans. Nature, 424, 1066-1071
Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics, 77, 71-94
Chen, F,m Hersh, B.M., Conradt, B., Zhou, Z., Riemer, D., Gruenbaum, Y. and Horvita, H.R. (2000). Translocation of C. elegans CED-4 to nuclear membeanes during programmed cell death. Science, 287, 1485-1489
Cohen O., and Kimchi A. (2001) DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ. 8, 6-15.
Conradt B. (2002) With a little help from your friends: cells don't die alone. Nat Cell Biol. 4, 139-43.
Conradt, B., and Horvitz, H.R. (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell, 93, 519-529
Ellis, H.M., and Horvitz, H.R.(1986) Genetic control of programmed cell death in the nematode C.elegans. Cell, 44, 817-829
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391,806-811.
Hoeppner D.J., Hengartner M.O., Schnabel R. (2001) Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature. 412, 202-206
.
Horvitz, H.R.(1999). Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res, 59, 1701s-1706s
Kaufmann S.H., and Hengartner M.O.(2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11, 526-534.
Kelly WG, Xu S, Montgomery MK, Fire A. (1997) Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics, 146, 227-38
Mangahas, P.M., Ahou, Z.,(2005) Clearance of apoptotic cells in Caenorhabditis elegans. Seminars in Cell DEV. Biol. 16, 295-306
Mayeur GL, Fraser CS, Peiretti F, Block KL, Hershey JW.(2003) Characterization of eIF3k: a newly discovered subunit of mammalian translation initiation factor elF3. Eur J Biochem, 270, 4133-4139
Mello, C., and Fire, A. (1995). DNA transformation. Methods Cell Biol. 48: 451–482.
Pretot RF, Burglin TR (1998) CEH-26, A PROSPERO (PROS) ORTHOLOGUE. European Worm Meeting
Reddien P.W., Cameron S., Horvitz H.R.(2001) Phagocytosis promotes programmed cell death in C. elegans. Nature. 412, 198-202.
Reddien P.W., and Horvitz H.R (2004) The engulfment process of programmed cell death in Caenorhabditis elegans. Annu. Rev. Cell Dev. Bio., 20, 193-221
Shaham S., Reddien P.W., Davies B., Horvitz H.R. (1999) Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3.Genetics. 153, 1655-71.
Shaham S., and Horvitz H.R. (1996) Developing C. elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10,578-591
Shaham S. (2003) Apoptosis: a process with a beta NAC for complexity. Cell, 114, 659-661
Stringham EG, Dixon DK, Jones D, Candido EP. (1992) Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans Mol. Biol. Cell, 3,221-233
Sulston J.E., and Horvitz H.R. (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 56, 110-56.
Sulston J.E., Schierenberg E., White J.G., Thomson J.N. (1983)The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 100, 64-119.
Tabara H., Grishok A., Mello C.C. (1998) RNAi in C. elegans: soaking in the genome sequence. Science. 282, 430-431.
Thompson C.B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science. 267, 1456-1462.
Timmons L., Fire A. (1998) Specific interference by ingested dsRNA. Nature. 395, 854.
Wei Z., Zhang P., Zhou Z., Cheng Z., Wan M, and Gong W. (2004). Crystal Structure of Human eIF3k, the First Structure of eIF3 Subunits. J Biol. Chem, 279, 34983-34990
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33479-
dc.description.abstract計畫性細胞死亡對多細胞生物的發育過程相當重要。我們發現在線蟲內EIF-3.K具有促進細胞死亡的活性: eif-3.k(lf)造成細胞屍體數目減少,而eif-3.k(gf)卻能使更多的細胞死亡。 EIF-3.K是個具有高度保守性的蛋白質,人類的EIF3K被預測具有兩個domains: HAM及WH,因此我們測試這兩個domains對EIF-3.K活性的重要性。我們利用deletion assay,發現HAM對EIF-3.K促進細胞死亡的功能並不重要,而WH domain對EIF-3.K是必須的,且進一步發現WH domain就能完全代表 EIF-3.K促進細胞死亡的活性。在yeast two-hybrid系統中EIF-3.K與CED-3、CED-4、DAPK-1彼此並無直接作用,我們利用yeast two-hybrid screen,找到三個蛋白質與EIF-3.K結合 : C17G10.9、NCL-1及CEH-26。只有ceh-26突變株的細胞屍體數目減少。我們再利用雙重突變株,發現eif-3.k及ceh-26可能作用在同一條遺傳途徑來調控細胞死亡。zh_TW
dc.description.abstractProgrammed cell death is important for development of animal. EIF3K was identified as DAPK interacting protein by using the death domain of DAPK as a bait in a yeast two-hybrid. EIF3K is highly conserved in metazoan. We found that EIF-3.K, the EIF3K homolog in C. elegans, had a pro-apoptotic activity. An eif-3.k mutation had reduced cell corpses during embryogenesis, whereas overexpression of eif-3.k caused extra cell deaths. Human EIF3K was predicated to contain two domains: HAM and WH. We performed deletion assays and found that HAM domain is dispensable for the pro-apoptotic function of EIF-3.K, but WH domain is necessary for its function. Furthermore, we found that expression of the WH domain also was sufficient to rescue the cell-death phenotype of the eif-3.k mutants. As no direct interaction was found between EIF-3.K and previously characterized components of the apoptotic machinery, such as CED-3, CED-4, and DAPK-1, we sought to identify proteins that interact with EIF-3.k by a yeast two-hybrid screen. We isolated three potential candidate clones: C17G10.9, NCL-1, and CEH-26. Only mutation in ceh-26 but not other two genes decreased number of cell corpses. Further genetic studies suggested ceh-26 and eif-3.k may participate in the same pathway during programmed cell death.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:42:50Z (GMT). No. of bitstreams: 1
ntu-95-R93b43007-1.pdf: 917496 bytes, checksum: 96ec70051ea93a175251f3211c527d78 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents 1
Abstract 4
中文摘要 5
Introduction 6
Experimental Procedures 12
Strains and Genetics 12
Molecular Biology 12
Transgenic Animals 14
Heat Shock Experiments 14
Immunostaining 15
Yeast two-hybrid screen 16
Bacteria-mediated RNAi. 16
Western Blotting 17
Results 18
The eif-3.k mutants had less programmed cell deaths than wild type throughout embryogenesis 18
Ectopic expression of EIF-3.K results in extra cell deaths 19
WH domain is required for the pro-apoptotic function of EIF-3.k, but HAM domain is dispensable for its function 19
Deletion of WH domain does not affect the expression patterns and stability of EIF-3.K 21
WH domain is sufficient for the efficient execution of cell death, not to induce ectopic cell death 22
Identification of Proteins that interact with EIF-3.K : C17G10.9, NCL-1, CEH-26 22
eif-3.k and ceh-26 may participate in the same genetic pathway during programmed cell death 24
eif-3.k and dapk-1 possibly act in the same pathway during programmed cell death 25
Discussion 26
eif-3.k is required for the efficient execution of cell death and sufficient to induce cell death-eif-3.k is a novel pro-apoptotic gene in C.elegans 26
WH domain is required and sufficient for the pro-apoptotic function of EIF-3.k 27
The relationship between EIF-3.K and CEH-26 28
References 30
Figures and tables 33
Figure 1. Sequence alignment of EIF3k homologues and structural features of EIF-3.K 33
Figure 2. The eif-3.k mutants had less programmed cell deaths than wild type throughout embryogenesis 34
Figure 3. Ectopic expression of eif-3.k by let-858 promoter completely rescues the eif-3.k cell-killing defect 35
Figure 4. Ectopic expression of eif-3.kΔHAM by let-858 promoter completely or almost fully rescues the eif-3.k cell-killing defect 36
Figure 5. Ectopic expression of eif-3.kΔWH by let-858 promoter does not rescue the eif-3.k cell-killing defect 37
Figure 6. Deletion of WH domain does not affect the expression patterns and stability of EIF-3.K 38
Figure 7. Ectopic expression of WH domain of EIF-3.K by let-858 promoter fully rescues the eif-3.k cell-killing defect 39
Figure 8. Identification of proteins that interact with EIF-3.K in yeast two-hybrid screen 40
Figure 9. c17g10.9 (RNAi) mutants have normal cell-corpse pattern during embryogenesis 41
Figure 10. ncl-1(e1942) mutants have normal cell-corpse pattern during embryogenesis 42
Figure 11. ceh-26(ok903) mutants causes significantly decreased number of cell corpses throughout embryogenesis 43
Figure 12. eif-3.k and ceh-26 may act in the same genetic pathway during programmed cell death 44
Figure 13. dapk-1(ju469); eif-3.k(gk126)double mutants has no synergistic effect in the decrease of cell corpses 45
Figure 14. dapk-1(gk219); eif-3.k(gk126)double mutants has no synergistic effect in the decrease of cell corpses 46
Figure 15. Ectopic expression of dapk-1 by heat-shock promoter does not rescue the eif-3.k cell-killing defect 47
Table 1. Overexpression of eif-3.k under the control of heat-shock promoters results in ectopic cell deaths 48
Table 2. Overexpression of eif-3.k under the control of heat shock promoters results in killing cells in some caspase mutants 49
Table 3. Rescue of eif-3.k mutants by expressing EIF-3.K, EIF-3.KΔHAM, EIF-3.KΔWH, and WH of EIF3.K using let-858 promoter 50
Table 4. Rescue of eif-3.k mutants by expressing EIF-3.K, EIF-3.KΔWH, and WH of EIF3.K using heat-shock promoters 51
Appendix 52
Appendix 1. Western Blotting of GST-fused EIF-3.K proteins or endogenous EIF-3.K by Polyclonal Rabbit α-EIF3.k Antibody 52
Appendix 2. Neither EIF-3.k nor WH domain alone interacts with CED-3, CED-4, and DAPK-1. 53
Appendix 3. Overexpression of hm9, human eIF3k, rescued the eif-3.k cell-killing defect in C. elegans 54
dc.language.isoen
dc.subject細胞死亡zh_TW
dc.subject線蟲zh_TW
dc.subjectcell deathen
dc.subjectC.elegansen
dc.subjecteif-3.ken
dc.subjectapoptosisen
dc.title功能與遺傳分析線蟲eif-3.k在細胞凋亡的角色zh_TW
dc.titleFunctional and Genetic Analysis of a Proapoptotic Gene eif-3.k in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃偉邦,陳瑞華
dc.subject.keyword線蟲,細胞死亡,zh_TW
dc.subject.keywordcell death,apoptosis,eif-3.k,C.elegans,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2006-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
895.99 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved